These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38645529)

  • 21. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles.
    Yu SY; Gunawan H; Tsai SW; Chen YJ; Yen TC; Liaw JW
    Sci Rep; 2017 Mar; 7():44680. PubMed ID: 28300218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Sensitivity and Wide Range Refractive Index Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber.
    Wang F; Wei Y; Han Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topotaxial fabrication of vertical Aux Ag1-x nanowire arrays: plasmon-active in the blue region and corrosion resistant.
    Lee H; Yoo Y; Kang T; In J; Seo MK; Kim B
    Small; 2012 May; 8(10):1527-33. PubMed ID: 22431295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties.
    Jia H; Fang C; Zhu XM; Ruan Q; Wang YX; Wang J
    Langmuir; 2015 Jul; 31(26):7418-26. PubMed ID: 26079391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD; Cheng SF; Chau LK; Wang CR
    Biosens Bioelectron; 2007 Jan; 22(6):926-32. PubMed ID: 16697633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies of Ultrafast Transient Absorption Spectroscopy of Gold Nanorods in an Aqueous Solution.
    Kedawat G; Sharma I; Nagpal K; Kumar M; Gupta G; Gupta BK
    ACS Omega; 2019 Jul; 4(7):12626-12631. PubMed ID: 31460383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates.
    Lee S; Mayer KM; Hafner JH
    Anal Chem; 2009 Jun; 81(11):4450-5. PubMed ID: 19415896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells.
    Shabaninezhad M; Ramakrishna G
    J Chem Phys; 2019 Apr; 150(14):144116. PubMed ID: 30981241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microchannel-based plasmonic refractive index sensor for low refractive index detection.
    Haque E; Anwar Hossain M; Namihira Y; Ahmed F
    Appl Opt; 2019 Feb; 58(6):1547-1554. PubMed ID: 30874045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polysorbate- and DNA-Mediated Synthesis and Strong, Stable, and Tunable Near-Infrared Photoluminescence of Plasmonic Long-Body Nanosnowmen.
    Kim J; Kim JM; Ha M; Oh JW; Nam JM
    ACS Nano; 2021 Dec; 15(12):19853-19863. PubMed ID: 34807582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation.
    Kang HS; Zhao WQ; Zhou T; Ma L; Yang DJ; Chen XB; Ding SJ; Wang QQ
    Nano Res; 2022; 15(10):9461-9469. PubMed ID: 35818567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of formaldehyde in water: a shape-effect on the plasmonic sensing properties of the gold nanoparticles.
    Nengsih S; Umar AA; Salleh MM; Oyama M
    Sensors (Basel); 2012; 12(8):10309-25. PubMed ID: 23112601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm.
    Chang HH; Murphy CJ
    Chem Mater; 2018 Feb; 30(4):1427-1435. PubMed ID: 31404258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO₂.
    Katagi Y; Kazuma E; Tatsuma T
    Nanoscale; 2014 Nov; 6(23):14543-8. PubMed ID: 25350687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential-Scanning Localized Plasmon Sensing with Single and Coupled Gold Nanorods.
    Kawawaki T; Zhang H; Nishi H; Mulvaney P; Tatsuma T
    J Phys Chem Lett; 2017 Aug; 8(15):3637-3641. PubMed ID: 28730812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and optical properties of small Au nanorods using a seedless growth technique.
    Ali MR; Snyder B; El-Sayed MA
    Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.