These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38645583)

  • 1. A pilot study: effect of somatosensory loss on motor corrections in response to unknown loads in a reaching task by chronic stroke survivors.
    Oh K; Rymer WZ; Choi J
    Biomed Eng Lett; 2024 May; 14(3):523-535. PubMed ID: 38645583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic-based ACTive somatoSENSory (Act.Sens) retraining on upper limb functions with chronic stroke survivors: study protocol for a pilot randomised controlled trial.
    Sidarta A; Lim YC; Kuah CWK; Loh YJ; Ang WT
    Pilot Feasibility Stud; 2021 Nov; 7(1):207. PubMed ID: 34782024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The speed of adaptation is dependent on the load type during target reaching by intact human subjects.
    Oh K; Rymer WZ; Choi J
    Exp Brain Res; 2021 Oct; 239(10):3091-3104. PubMed ID: 34401936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairments of reaching movements in patients without proprioception. I. Spatial errors.
    Gordon J; Ghilardi MF; Ghez C
    J Neurophysiol; 1995 Jan; 73(1):347-60. PubMed ID: 7714577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke.
    Kuczynski AM; Kirton A; Semrau JA; Dukelow SP
    J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic, viscous, and mass load effects on poststroke muscle recruitment and co-contraction during reaching: a pilot study.
    Stoeckmann TM; Sullivan KJ; Scheidt RA
    Phys Ther; 2009 Jul; 89(7):665-78. PubMed ID: 19443557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Errors in proprioceptive matching post-stroke are associated with impaired recruitment of parietal, supplementary motor, and temporal cortices.
    Kenzie JM; Findlater SE; Pittman DJ; Goodyear BG; Dukelow SP
    Brain Imaging Behav; 2019 Dec; 13(6):1635-1649. PubMed ID: 31218533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prevalence, distribution, and functional importance of lower limb somatosensory impairments in chronic stroke survivors: a cross sectional observational study.
    Gorst T; Rogers A; Morrison SC; Cramp M; Paton J; Freeman J; Marsden J
    Disabil Rehabil; 2019 Oct; 41(20):2443-2450. PubMed ID: 29726732
    [No Abstract]   [Full Text] [Related]  

  • 18. Enhancing touch sensibility by sensory retraining in a sensory discrimination task
    Villar Ortega E; Aksöz EA; Buetler KA; Marchal-Crespo L
    Front Rehabil Sci; 2022; 3():929431. PubMed ID: 36189030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic identification of kinesthetic deficits after stroke.
    Semrau JA; Herter TM; Scott SH; Dukelow SP
    Stroke; 2013 Dec; 44(12):3414-21. PubMed ID: 24193800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton.
    Mochizuki G; Centen A; Resnick M; Lowrey C; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2019 Nov; 16(1):146. PubMed ID: 31753011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.