These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38645689)

  • 1. Understanding optimal cadence dynamics: a systematic analysis of the power-velocity relationship in track cyclists with increasing exercise intensity.
    Dunst AK; Hesse C; Ueberschär O
    Front Physiol; 2024; 15():1343601. PubMed ID: 38645689
    [No Abstract]   [Full Text] [Related]  

  • 2. A Novel Approach to the Determination of Time- and Fatigue-Dependent Efficiency during Maximal Cycling Sprints.
    Dunst AK; Hesse C; Ueberschär O; Holmberg HC
    Sports (Basel); 2023 Jan; 11(2):. PubMed ID: 36828314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue-Free Force-Velocity and Power-Velocity Profiles for Elite Track Sprint Cyclists: The Influence of Duration, Gear Ratio and Pedalling Rates.
    Dunst AK; Hesse C; Ueberschär O; Holmberg HC
    Sports (Basel); 2022 Aug; 10(9):. PubMed ID: 36136385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadence Paradox in Cycling-Part 2: Theory and Simulation of Maximal Lactate Steady State and Carbohydrate Utilization Dependent on Cycling Cadence.
    Beneke R; Leithäuser RM
    Int J Sports Physiol Perform; 2024 Jul; 19(7):677-684. PubMed ID: 38754858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial.
    Stebbins CL; Moore JL; Casazza GA
    J Sports Sci Med; 2014 Jan; 13(1):114-9. PubMed ID: 24570614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power production strategy during steady-state cycling is cadence dependent.
    Yamaguchi Y; Otsuka M; Wada N; Nishiyama T
    J Biomech; 2023 Sep; 158():111772. PubMed ID: 37643551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-velocity profiles of track cyclists differ between seated and non-seated positions.
    Dwyer DB; Molaro C; Rouffet DM
    Sports Biomech; 2023 Apr; 22(4):621-632. PubMed ID: 35758132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadence Paradox in Cycling-Part 1: Maximal Lactate Steady State and Carbohydrate Utilization Dependent on Cycling Cadence.
    Beneke R; Granseyer M; Leithäuser RM
    Int J Sports Physiol Perform; 2024 Jun; 19(6):558-564. PubMed ID: 38521054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise.
    Mitchell RA; Boyle KG; Ramsook AH; Puyat JH; Henderson WR; Koehle MS; Guenette JA
    Med Sci Sports Exerc; 2019 Aug; 51(8):1727-1735. PubMed ID: 30817718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Concept of Optimal Dynamic Pedalling Rate and Its Application to Power Output and Fatigue in Track Cycling Sprinters-A Case Study.
    Dunst AK; Hesse C; Ueberschär O
    Sports (Basel); 2023 Jan; 11(1):. PubMed ID: 36668723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.
    Takaishi T; Yamamoto T; Ono T; Ito T; Moritani T
    Med Sci Sports Exerc; 1998 Mar; 30(3):442-9. PubMed ID: 9526892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance at high pedaling cadences in well-trained cyclists.
    Mora-Rodriguez R; Aguado-Jimenez R
    Med Sci Sports Exerc; 2006 May; 38(5):953-7. PubMed ID: 16672850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and Validity of Cycling Sprint Performance at Isolinear Mode Without Torque Factor: A Preliminary Study in Well-Trained Male Cyclists.
    Nascimento EMF; Klitzke Borszcz F; Ventura TP; Caputo F; Guglielmo LGA; de Lucas RD
    Res Q Exerc Sport; 2024 Feb; ():1-8. PubMed ID: 38319597
    [No Abstract]   [Full Text] [Related]  

  • 15. High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate.
    Beneke R; Alkhatib A
    Biol Sport; 2015 Mar; 32(1):27-33. PubMed ID: 25729147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between pedal force application technique and the ability to perform supramaximal pedaling cadences.
    Yamaguchi Y; Otsuka M; Watanabe K; Wada N; Nishiyama T
    Front Sports Act Living; 2022; 4():958827. PubMed ID: 36051966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of elite road-cycling sprints in relation to maximal power-velocity-endurance profile: a longitudinal one-case study.
    Robin M; Nordez A; Dorel S
    Scand J Med Sci Sports; 2022 Mar; 32(3):598-611. PubMed ID: 34800055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power-cadence relationship in endurance cycling.
    Emanuele U; Denoth J
    Eur J Appl Physiol; 2012 Jan; 112(1):365-75. PubMed ID: 21573778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling.
    Riveros-Matthey CD; Carroll TJ; Lichtwark GA; Connick MJ
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37326292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.