BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38646007)

  • 1. Inhibition of gut digestive proteases by cyanobacterial diets decreases infection in a
    Sánchez KF; von Elert E; Monell K; Calhoun S; Maisha A; McCreadie P; Duffy MA
    Ecol Evol; 2024 Apr; 14(4):e11340. PubMed ID: 38646007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system.
    Sánchez KF; Huntley N; Duffy MA; Hunter MD
    Proc Biol Sci; 2019 Jan; 286(1894):20182231. PubMed ID: 30963882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna.
    Schwarzenberger A; Kuster CJ; Von Elert E
    Mol Ecol; 2012 Oct; 21(19):4898-911. PubMed ID: 22943151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors.
    Schwarzenberger A; Zitt A; Kroth P; Mueller S; Von Elert E
    BMC Physiol; 2010 May; 10():6. PubMed ID: 20441581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression and characterization of a novel serine protease from Daphnia magna: A possible role in susceptibility to toxic cyanobacteria.
    Lange J; Demir F; Huesgen PF; Baumann U; von Elert E; Pichlo C
    Aquat Toxicol; 2018 Dec; 205():140-147. PubMed ID: 30384195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806.
    Agrawal MK; Zitt A; Bagchi D; Weckesser J; Bagchi SN; von Elert E
    Environ Toxicol; 2005 Jun; 20(3):314-22. PubMed ID: 15892063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.
    Schwarzenberger A; Sadler T; Von Elert E
    J Exp Biol; 2013 Oct; 216(Pt 19):3649-55. PubMed ID: 23788705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia).
    Agha R; Saebelfeld M; Manthey C; Rohrlack T; Wolinska J
    Sci Rep; 2016 Oct; 6():35039. PubMed ID: 27733762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross talk: Two way allelopathic interactions between toxic Microcystis and Daphnia.
    Bojadzija Savic G; Bormans M; Edwards C; Lawton L; Briand E; Wiegand C
    Harmful Algae; 2020 Apr; 94():101803. PubMed ID: 32414501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera).
    Czarnecki O; Henning M; Lippert I; Welker M
    Environ Microbiol; 2006 Jan; 8(1):77-87. PubMed ID: 16343324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copy number variation of a protease gene of Daphnia: Its role in population tolerance.
    Schwarzenberger A; Keith NR; Jackson CE; Von Elert E
    J Exp Zool A Ecol Integr Physiol; 2017 Feb; 327(2-3):119-126. PubMed ID: 29356420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential infection of
    Manzi F; Halle S; Seemann L; Ben-Ami F; Wolinska J
    Parasitology; 2021 Nov; 148(13):1566-1577. PubMed ID: 35060463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological interaction of Daphnia and Microcystis with regard to cyanobacterial secondary metabolites.
    Sadler T; von Elert E
    Aquat Toxicol; 2014 Nov; 156():96-105. PubMed ID: 25173836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in Immune Defense Shapes Disease Outcomes in Laboratory and Wild Daphnia.
    Stewart Merrill TE; Hall SR; Merrill L; Cáceres CE
    Integr Comp Biol; 2019 Nov; 59(5):1203-1219. PubMed ID: 31141120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanobacteria facilitate parasite epidemics in Daphnia.
    Tellenbach C; Tardent N; Pomati F; Keller B; Hairston NG; Wolinska J; Spaak P
    Ecology; 2016 Dec; 97(12):3422-3432. PubMed ID: 27912017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life-history responses of Daphnia sinensis simultaneously exposed to Microcystis aeruginosa and Cylindrospermopsis raciborskii.
    Lei L; Huang H; Peng L; Yang Y; Xiao L; Han BP
    Ecotoxicology; 2020 Aug; 29(6):771-779. PubMed ID: 32385599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between fungicides and parasites: Tebuconazole, but not copper, suppresses infection in a Daphnia-Metschnikowia experimental model.
    Cuco AP; Abrantes N; Gonçalves F; Wolinska J; Castro BB
    PLoS One; 2017; 12(2):e0172589. PubMed ID: 28231278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cladoceran offspring tolerance to toxic Microcystis is promoted by maternal warming.
    Lyu K; Zhang L; Gu L; Zhu X; Wilson AE; Yang Z
    Environ Pollut; 2017 Aug; 227():451-459. PubMed ID: 28486188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing.
    Chen W; Dou J; Xu X; Ma X; Chen J; Liu X
    J Hazard Mater; 2024 Mar; 465():133248. PubMed ID: 38147752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.