BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38646668)

  • 1. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C
    Endo S; Matsuzawa S
    Environ Sci Technol; 2024 Apr; 58(17):7628-7635. PubMed ID: 38646668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular Interactions, Solute Descriptors, and Partition Properties of Neutral Per- and Polyfluoroalkyl Substances (PFAS).
    Endo S
    Environ Sci Technol; 2023 Nov; 57(45):17534-17541. PubMed ID: 37909300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Partitioning of Anionic Carboxylic and Perfluoroalkyl Carboxylic and Sulfonic Acids to Octanol and Membrane Lipid.
    Torralba-Sanchez TL; Di Toro DM; Dmitrenko O; Murillo-Gelvez J; Tratnyek PG
    Environ Toxicol Chem; 2023 Nov; 42(11):2317-2328. PubMed ID: 37439660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated Aqueous Film-Forming Foams Applications: Impacts on Polyfluoroalkyl Substances Retention in Saturated Soil.
    Wanzek TA; Field JA; Kostarelos K
    Environ Sci Technol; 2024 Jan; 58(3):1659-1668. PubMed ID: 38198694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-based approach to calculate hydrophobicity of anionic and nonionic surfactants derived from chromatographic retention on a C
    Hammer J; Haftka JJ; Scherpenisse P; Hermens JL; de Voogt PW
    Environ Toxicol Chem; 2017 Feb; 36(2):329-336. PubMed ID: 27463891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tools for Understanding and Predicting the Affinity of Per- and Polyfluoroalkyl Substances for Anion-Exchange Sorbents.
    Parker BA; Knappe DRU; Titaley IA; Wanzek TA; Field JA
    Environ Sci Technol; 2022 Nov; 56(22):15470-15477. PubMed ID: 36265138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatility and Nonspecific van der Waals Interaction Properties of Per- and Polyfluoroalkyl Substances (PFAS): Evaluation Using Hexadecane/Air Partition Coefficients.
    Hammer J; Endo S
    Environ Sci Technol; 2022 Nov; 56(22):15737-15745. PubMed ID: 36240042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Neutral and Anionic Surfactant Sorption to Solid-Phase Microextraction Fibers.
    Haftka JJ; Hammer J; Hermens JL
    Environ Sci Technol; 2015 Sep; 49(18):11053-61. PubMed ID: 26322866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review.
    Li H; Dong Q; Zhang M; Gong T; Zan R; Wang W
    Environ Pollut; 2023 Jun; 327():121579. PubMed ID: 37028785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of structurally different ionized pharmaceutical and illicit drugs to a mixed-mode coated microsampler.
    Peltenburg H; Timmer N; Bosman IJ; Hermens JL; Droge ST
    J Chromatogr A; 2016 May; 1447():1-8. PubMed ID: 27083257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites.
    Guelfo JL; Higgins CP
    Environ Sci Technol; 2013 May; 47(9):4164-71. PubMed ID: 23566120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prediction of
    Liu X; Gao W; Liang C; Qiao J; Wang K; Lian H
    Se Pu; 2021 Nov; 39(11):1230-1238. PubMed ID: 34677018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon.
    Hakimabadi SG; Taylor A; Pham AL
    Water Res; 2023 Aug; 242():120212. PubMed ID: 37336180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure.
    Le ST; Gao Y; Kibbey TCG; O'Carroll DM
    Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Mineral-Organic Interactions in PFAS Retention by AFFF-Impacted Soil.
    Wanzek T; Stults JF; Johnson MG; Field JA; Kleber M
    Environ Sci Technol; 2023 Apr; 57(13):5231-5242. PubMed ID: 36947878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant.
    Ruiz-Angel MJ; Carda-Broch S; García-Alvarez-Coque MC; Berthod A
    J Chromatogr A; 2004 Mar; 1030(1-2):279-88. PubMed ID: 15043280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.