BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38646668)

  • 21. A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon.
    Niarchos G; Georgii L; Ahrens L; Kleja DB; Fagerlund F
    Ecotoxicol Environ Saf; 2023 Oct; 264():115408. PubMed ID: 37666203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling sorption of anionic surfactants onto sediment materials: an a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates.
    Higgins CP; Luthy RG
    Environ Sci Technol; 2007 May; 41(9):3254-61. PubMed ID: 17539534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved total organic fluorine methods for more comprehensive measurement of PFAS in industrial wastewater, river water, and air.
    Forster ALB; Zhang Y; Westerman DC; Richardson SD
    Water Res; 2023 May; 235():119859. PubMed ID: 36958221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of per- and polyfluoroalkyl substances (PFAS) by ionic liquid-modified clays: Effect of clay composition and PFAS structure.
    Dong Q; Min X; Zhao Y; Wang Y
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):925-934. PubMed ID: 37898076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micellar partitioning and its effects on Henry's law constants of chlorinated solvents in anionic and nonionic surfactant solutions.
    Zhang C; Zheng G; Nichols CM
    Environ Sci Technol; 2006 Jan; 40(1):208-14. PubMed ID: 16433353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents.
    Karapanagioti HK; Sabatini DA; Bowman RS
    Water Res; 2005 Feb; 39(4):699-709. PubMed ID: 15707643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of perfluoroalkyl and polyfluoroalkyl substances in water and water/soil slurry using Fe
    Gevaerd de Souza N; Parenky AC; Nguyen HH; Jeon J; Choi H
    Water Environ Res; 2022 Jan; 94(1):e1671. PubMed ID: 34854167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics.
    Park M; Wu S; Lopez IJ; Chang JY; Karanfil T; Snyder SA
    Water Res; 2020 Mar; 170():115364. PubMed ID: 31812815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces.
    Cai W; Navarro DA; Du J; Ying G; Yang B; McLaughlin MJ; Kookana RS
    Sci Total Environ; 2022 Apr; 817():152975. PubMed ID: 35026264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport potential of super-hydrophobic organic contaminants in anionic-nonionic surfactant mixture micelles.
    Schacht VJ; Grant SC; Haftka JJ; Gaus C; Hawker DW
    Chemosphere; 2019 Sep; 230():173-181. PubMed ID: 31103863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified linear solvation energy relationships for adsorption of perfluorocarboxylic acids by polystyrene microplastics.
    Hatinoglu MD; Perreault F; Apul OG
    Sci Total Environ; 2023 Feb; 860():160524. PubMed ID: 36574542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Determination of Air/Water Partition Coefficients for 21 Per- and Polyfluoroalkyl Substances Reveals Variable Performance of Property Prediction Models.
    Endo S; Hammer J; Matsuzawa S
    Environ Sci Technol; 2023 Jun; 57(22):8406-8413. PubMed ID: 37232091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks.
    Li R; Alomari S; Islamoglu T; Farha OK; Fernando S; Thagard SM; Holsen TM; Wriedt M
    Environ Sci Technol; 2021 Nov; 55(22):15162-15171. PubMed ID: 34714637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China.
    Liu Y; Zhang Y; Li J; Wu N; Li W; Niu Z
    Environ Pollut; 2019 Mar; 246():34-44. PubMed ID: 30529939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Nov; 796():148893. PubMed ID: 34265607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.
    Brusseau ML
    Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.