These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transient and steady state simulation of the renal countercurrent mechanism. Ang PG; Landahl HD; Bartoli E Comput Biol Med; 1977 Apr; 7(2):87-111. PubMed ID: 852279 [No Abstract] [Full Text] [Related]
3. [Urinary concentration and dilution mechanism of the kidney]. Imai M Nihon Rinsho; 1980 Aug; 38(8):2860-70. PubMed ID: 7009917 [No Abstract] [Full Text] [Related]
4. Structural organization of the renal medullary counterflow system. Kriz W Fed Proc; 1983 May; 42(8):2379-85. PubMed ID: 6840287 [TBL] [Abstract][Full Text] [Related]
5. Maturation of diluting capacity in loop of Henle of rat superficial nephrons. Zink H; Horster M Am J Physiol; 1977 Dec; 233(6):F519-24. PubMed ID: 596450 [TBL] [Abstract][Full Text] [Related]
6. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Greger R; Velázquez H Kidney Int; 1987 Feb; 31(2):590-6. PubMed ID: 3550228 [No Abstract] [Full Text] [Related]
7. Countercurrent transport in the kidney. Stephenson JL Annu Rev Biophys Bioeng; 1978; 7():315-39. PubMed ID: 352242 [No Abstract] [Full Text] [Related]
8. Studies of isolated renal tubules in vitro. Grantham JJ; Irish JM; Hall DA Annu Rev Physiol; 1978; 40():249-77. PubMed ID: 345950 [No Abstract] [Full Text] [Related]
9. A digital computer model of the renal medullary countercurrent system. I. Furukawa T; Takasugi S; Inoue M; Inada H; Kajiya F Comput Biomed Res; 1974 Jun; 7(3):213-29. PubMed ID: 4842407 [No Abstract] [Full Text] [Related]
10. Computer simulation of osmotic gradient without active transport in renal inner medulla. Stewart J; Valtin H Kidney Int; 1972 Nov; 2(5):264-70. PubMed ID: 4670905 [No Abstract] [Full Text] [Related]
12. [Functional and structural characteristics of the nephron segments]. Rohovyĭ IuIe; Boĭko OV; Filipova LO Fiziol Zh (1994); 2003; 49(6):94-100. PubMed ID: 14965045 [TBL] [Abstract][Full Text] [Related]
13. Transient behavior of the single loop solute cycling countercurrent multiplier. Stephenson JL Bull Math Biol; 1973; 35(1):183-94. PubMed ID: 4783697 [No Abstract] [Full Text] [Related]
14. A computer model of the renal countercurrent system. Stewart J; Luggen ME; Valtin H Kidney Int; 1972 Nov; 2(5):253-63. PubMed ID: 4670904 [No Abstract] [Full Text] [Related]
15. Sodium chloride coupled transport in mammalian nephrons. Burg M; Good D Annu Rev Physiol; 1983; 45():533-47. PubMed ID: 6342523 [TBL] [Abstract][Full Text] [Related]
16. Physiological control of the urinary concentrating mechanism by peptide hormones. de Rouffignac C; Elalouf JM; Roinel N Kidney Int; 1987 Feb; 31(2):611-20. PubMed ID: 3550231 [No Abstract] [Full Text] [Related]
17. Concentration of urine in a central core model of the renal counterflow system. Stephenson JL Kidney Int; 1972 Aug; 2(2):85-94. PubMed ID: 4671532 [No Abstract] [Full Text] [Related]
18. The concentrating mechanism in the renal medulla. Berliner RW Kidney Int; 1976 Feb; 9(2):214-22. PubMed ID: 940263 [No Abstract] [Full Text] [Related]
19. Segmental analysis of sodium reabsorption during renal vein constriction. Burnett JC; Haas JA; Knox FG Am J Physiol; 1982 Jul; 243(1):F19-22. PubMed ID: 7091366 [TBL] [Abstract][Full Text] [Related]
20. Electrical conductivity of tubular fluid of the rat nephron. Micropuncture study of the diluting segment in situ. Gutsche HU; Múller-Suur R; Hegel U; Hierholzer K Pflugers Arch; 1980 Jan; 383(2):113-21. PubMed ID: 7189855 [No Abstract] [Full Text] [Related] [Next] [New Search]