These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38647217)

  • 1. Smoky Characters in Wine: Distinctive Flavor or Taint?
    Parker M; Jiang W; Siebert TE; Herderich MJ
    J Agric Food Chem; 2024 May; 72(17):9581-9586. PubMed ID: 38647217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars.
    Ristic R; van der Hulst L; Capone DL; Wilkinson KL
    J Agric Food Chem; 2017 May; 65(20):4146-4152. PubMed ID: 28464603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smoke from simulated forest fire alters secondary metabolites in Vitis vinifera L. berries and wine.
    Noestheden M; Noyovitz B; Riordan-Short S; Dennis EG; Zandberg WF
    Planta; 2018 Dec; 248(6):1537-1550. PubMed ID: 30151661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Potential for Smoke from Stubble Burning to Taint Grapes and Wine.
    Wilkinson K; Ristic R; McNamara I; Loveys B; Jiang W; Krstic M
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of phenol composition on the sensory profile of smoke affected wines.
    Kelly D; Zerihun A
    Molecules; 2015 May; 20(6):9536-49. PubMed ID: 26016545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine.
    Parker M; Osidacz P; Baldock GA; Hayasaka Y; Black CA; Pardon KH; Jeffery DW; Geue JP; Herderich MJ; Francis IL
    J Agric Food Chem; 2012 Mar; 60(10):2629-37. PubMed ID: 22324544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fruit maturity at harvest on the intensity of smoke taint in wine.
    Ristic R; Boss PK; Wilkinson KL
    Molecules; 2015 May; 20(5):8913-27. PubMed ID: 25993420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques for Mitigating the Effects of Smoke Taint While Maintaining Quality in Wine Production: A Review.
    Mirabelli-Montan YA; Marangon M; Graça A; Mayr Marangon CM; Wilkinson KL
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile Compounds Related to 'Stone Fruit' Aroma Attributes in Viognier and Chardonnay Wines.
    Siebert TE; Barker A; Pearson W; Barter SR; de Barros Lopes MA; Darriet P; Herderich MJ; Francis IL
    J Agric Food Chem; 2018 Mar; 66(11):2838-2850. PubMed ID: 29485286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smoke-derived taint in wine: effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine.
    Kennison KR; Wilkinson KL; Williams HG; Smith JH; Gibberd MR
    J Agric Food Chem; 2007 Dec; 55(26):10897-901. PubMed ID: 18052239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Mitigation of Smoke Taint in Wines by Post-Harvest Ozone Treatment of Grapes.
    Modesti M; Szeto C; Ristic R; Jiang W; Culbert J; Bindon K; Catelli C; Mencarelli F; Tonutti P; Wilkinson K
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33806831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compositional Changes in Grapes and Leaves as a Consequence of Smoke Exposure of Vineyards from Multiple Bushfires across a Ripening Season.
    Jiang W; Parker M; Hayasaka Y; Simos C; Herderich M
    Molecules; 2021 May; 26(11):. PubMed ID: 34073537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Evaluation of a Vineyard-Based Strategy To Mitigate Smoke-Taint in Wine Grapes.
    Favell JW; Noestheden M; Lyons SM; Zandberg WF
    J Agric Food Chem; 2019 Dec; 67(51):14137-14142. PubMed ID: 31802665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of benzenemethanethiol to smoky aroma of certain Vitis vinifera L. wines.
    Tominaga T; Guimbertau G; Dubourdieu D
    J Agric Food Chem; 2003 Feb; 51(5):1373-6. PubMed ID: 12590483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosidically-Bound Volatile Phenols Linked to Smoke Taint: Stability during Fermentation with Different Yeasts and in Finished Wine.
    Whitmore BA; McCann SE; Noestheden M; Dennis EG; Lyons SM; Durall DM; Zandberg WF
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling.
    Summerson V; Gonzalez Viejo C; Pang A; Torrico DD; Fuentes S
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and Glycosylation of Smoke-Derived Volatile Phenols by Cabernet Sauvignon Grapes and Their Subsequent Fate during Winemaking.
    Szeto C; Ristic R; Capone D; Puglisi C; Pagay V; Culbert J; Jiang W; Herderich M; Tuke J; Wilkinson K
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Different Interstimulus Rinse Protocols on Smoke Attribute Perception in Wildfire-Affected Wines.
    Fryer JA; Collins TS; Tomasino E
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Equation Modelling (SEM) applied to sensory profile of Vinho Verde monovarietal wines.
    Vilela A; Marques C; Correia E
    Food Res Int; 2018 Sep; 111():650-660. PubMed ID: 30007729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional Changes in Smoke-Affected Grape Juice as a Consequence of Activated Carbon Treatment and the Impact on Phenolic Compounds and Smoke Flavor in Wine.
    Culbert JA; Jiang W; Bilogrevic E; Likos D; Francis IL; Krstic MP; Herderich MJ
    J Agric Food Chem; 2021 Sep; 69(35):10246-10259. PubMed ID: 34428045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.