These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38647310)

  • 61. A Ternary Dumbbell Structure with Spatially Separated Catalytic Sites for Photocatalytic Overall Water Splitting.
    Qiu B; Cai L; Zhang N; Tao X; Chai Y
    Adv Sci (Weinh); 2020 Sep; 7(17):1903568. PubMed ID: 32995115
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intergrowth of Cocatalysts with Host Photocatalysts for Improved Solar-to-Hydrogen Conversion.
    Qin Z; Chen Y; Wang X; Guo X; Guo L
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1264-72. PubMed ID: 26711355
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Function-oriented design of robust metal cocatalyst for photocatalytic hydrogen evolution on metal/titania composites.
    Wang D; Gong XQ
    Nat Commun; 2021 Jan; 12(1):158. PubMed ID: 33420037
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhancing Photocatalytic Hydrogen Production of g-C
    Li Y; Lu Y; Ma Z; Dong L; Jia X; Zhang J
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947614
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Construction 0D/2D heterojunction by highly dispersed Ag
    You Z; Yue X; Zhang D; Fan J; Xiang Q
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):662-675. PubMed ID: 34530187
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dual Cocatalysts in TiO
    Meng A; Zhang L; Cheng B; Yu J
    Adv Mater; 2019 Jul; 31(30):e1807660. PubMed ID: 31148244
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.
    Yuan YJ; Lu HW; Yu ZT; Zou ZG
    ChemSusChem; 2015 Dec; 8(24):4113-27. PubMed ID: 26586523
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy.
    Yu Z; Huang Q; Jiang X; Lv X; Xiao X; Wang M; Shen Y; Wittstock G
    Anal Chem; 2021 Sep; 93(36):12221-12229. PubMed ID: 34461018
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis of Polyaniline Supported CdS/CdS-ZnS/CdS-TiO
    Qutub N; Singh P; Sabir S; Umar K; Sagadevan S; Oh WC
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458061
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Simultaneous Loading of Ni
    Lv Y; Zhang W; Gu Q; Gao Z
    Chemistry; 2023 Jan; 29(2):e202202678. PubMed ID: 36210336
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cocatalyzing Pt/PtO Phase-Junction Nanodots on Hierarchically Porous TiO
    Ren XN; Hu ZY; Jin J; Wu L; Wang C; Liu J; Liu F; Wu M; Li Y; Tendeloo GV; Su BL
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29687-29698. PubMed ID: 28812876
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity.
    He L; Wood TE; Wu B; Dong Y; Hoch LB; Reyes LM; Wang D; Kübel C; Qian C; Jia J; Liao K; O'Brien PG; Sandhel A; Loh JY; Szymanski P; Kherani NP; Sum TC; Mims CA; Ozin GA
    ACS Nano; 2016 May; 10(5):5578-86. PubMed ID: 27159793
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution.
    Chu J; Sun G; Han X; Chen X; Wang J; Hu W; Waluyo I; Hunt A; Du Y; Song B; Xu P
    Nanoscale; 2019 Sep; 11(33):15633-15640. PubMed ID: 31408076
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Twin defects engineered Pd cocatalyst on C
    Lang Q; Hu W; Zhou P; Huang T; Zhong S; Yang L; Chen J; Bai S
    Nanotechnology; 2017 Dec; 28(48):484003. PubMed ID: 28980525
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer.
    Jiang L; Wang K; Wu X; Zhang G; Yin S
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26898-26908. PubMed ID: 31268294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ni(OH)
    Li M; Chen F; Xu Y; Tian M
    Langmuir; 2024 Feb; ():. PubMed ID: 38316545
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reversed selectivity of photocatalytic CO
    Wang J; Li Y; Zhao J; Xiong Z; Zhang J; Zhao Y
    Phys Chem Chem Phys; 2021 Apr; 23(15):9407-9417. PubMed ID: 33885115
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 0D ultrafine ruthenium quantum dot decorated 3D porous graphitic carbon nitride with efficient charge separation and appropriate hydrogen adsorption capacity for superior photocatalytic hydrogen evolution.
    An P; Zhu W; Qiao L; Sun S; Xu Y; Jiang D; Chen M; Meng S
    Dalton Trans; 2021 Feb; 50(7):2414-2425. PubMed ID: 33522540
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts.
    Li A; Chang X; Huang Z; Li C; Wei Y; Zhang L; Wang T; Gong J
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13734-13738. PubMed ID: 27444686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.