These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38647316)

  • 1. Automated Compression Testing of the Ocular Lens.
    Alzoubi D; Rich W; Reilly MA
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38647316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-scattering study of the normal human eye lens: elastic properties and age dependence.
    Bailey ST; Twa MD; Gump JC; Venkiteshwar M; Bullimore MA; Sooryakumar R
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2910-7. PubMed ID: 20529725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse lens stiffness measurements.
    Baradia H; Nikahd N; Glasser A
    Exp Eye Res; 2010 Aug; 91(2):300-7. PubMed ID: 20542031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy.
    Scarcelli G; Kim P; Yun SH
    Biophys J; 2011 Sep; 101(6):1539-45. PubMed ID: 21943436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microindentation of the young porcine ocular lens.
    Reilly M; Ravi N
    J Biomech Eng; 2009 Apr; 131(4):044502. PubMed ID: 19275444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age.
    Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X
    Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of porcine lenses using optical coherence elastography and inverse finite element analysis.
    Cabeza-Gil I; Tahsini V; Kling S
    Exp Eye Res; 2023 Aug; 233():109558. PubMed ID: 37385534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography.
    Zhang X; Wang Q; Lyu Z; Gao X; Zhang P; Lin H; Guo Y; Wang T; Chen S; Chen X
    Biomed Eng Online; 2018 Jun; 17(1):75. PubMed ID: 29898725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical response of the porcine lens to a spinning test.
    Reilly MA; Martius P; Kumar S; Burd HJ; Stachs O
    Z Med Phys; 2016 Jun; 26(2):127-35. PubMed ID: 26777319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia.
    Knaus KR; Hipsley A; Blemker SS
    Biomech Model Mechanobiol; 2024 Feb; 23(1):193-205. PubMed ID: 37733144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system.
    Wu C; Han Z; Wang S; Li J; Singh M; Liu CH; Aglyamov S; Emelianov S; Manns F; Larin KV
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1292-300. PubMed ID: 25613945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved spinning lens test to determine the stiffness of the human lens.
    Burd HJ; Wilde GS; Judge SJ
    Exp Eye Res; 2011 Jan; 92(1):28-39. PubMed ID: 21040722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature affects the biomechanical response of in vitro non-human primate lenses during lens stretching.
    Maceo Heilman B; Durkee H; Rowaan CJ; Arrieta E; Kelly SP; Ehrmann K; Manns F; Parel JM
    Exp Eye Res; 2022 Mar; 216():108951. PubMed ID: 35051430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential Application of Glass Coverslips to Assess the Compressive Stiffness of the Mouse Lens: Strain and Morphometric Analyses.
    Cheng C; Gokhin DS; Nowak RB; Fowler VM
    J Vis Exp; 2016 May; (111):. PubMed ID: 27166880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.
    Marussich L; Manns F; Nankivil D; Maceo Heilman B; Yao Y; Arrieta-Quintero E; Ho A; Augusteyn R; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4239-48. PubMed ID: 26161985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modelling of the accommodating lens.
    Burd HJ; Judge SJ; Cross JA
    Vision Res; 2002 Aug; 42(18):2235-251. PubMed ID: 12207982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the mechanical behaviour and estimation of the elastic properties of porcine zonular fibres.
    Bocskai ZI; Sándor GL; Kiss Z; Bojtár I; Nagy ZZ
    J Biomech; 2014 Oct; 47(13):3264-71. PubMed ID: 25242131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Lens Biomechanical Contributions to Presbyopia.
    Rich W; Reilly MA
    Curr Eye Res; 2023 Feb; 48(2):182-194. PubMed ID: 35713207
    [No Abstract]   [Full Text] [Related]  

  • 20. The significance of the shape of the lens and capsular energy changes in accommodation.
    Fisher RF
    J Physiol; 1969 Mar; 201(1):21-47. PubMed ID: 5775812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.