These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38647316)

  • 21. Optical coherence elastography of cold cataract in porcine lens.
    Zhang H; Wu C; Singh M; Nair A; Aglyamov S; Larin K
    J Biomed Opt; 2019 Mar; 24(3):1-7. PubMed ID: 30864348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relation between injected volume and optical parameters in refilled isolated porcine lenses.
    Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography.
    Wu C; Aglyamov SR; Han Z; Singh M; Liu CH; Larin KV
    Biomed Opt Express; 2018 Dec; 9(12):6455-6466. PubMed ID: 31065442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EphA2 and Ephrin-A5 Guide Eye Lens Suture Alignment and Influence Whole Lens Resilience.
    Cheng C
    Invest Ophthalmol Vis Sci; 2021 Dec; 62(15):3. PubMed ID: 34854885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of shape and stiffness to accommodative loss in the ageing human lens: a finite element model assessment.
    Wang K; Hoshino M; Uesugi K; Yagi N; Pierscionek BK
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B116-B122. PubMed ID: 31044989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A numerical investigation of changes in lens shape during accommodation.
    Cabeza-Gil I; Grasa J; Calvo B
    Sci Rep; 2021 May; 11(1):9639. PubMed ID: 33953252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring the effects of postmortem time and age on mouse lens elasticity using atomic force microscopy.
    Batchelor WM; Heilman BM; Arrieta-Quintero E; Ruggeri M; Parel JM; Manns F; Cabrera-Ghayouri S; Dibas M; Ziebarth NM
    Exp Eye Res; 2021 Nov; 212():108768. PubMed ID: 34534541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear modulus data for the human lens determined from a spinning lens test.
    Wilde GS; Burd HJ; Judge SJ
    Exp Eye Res; 2012 Apr; 97(1):36-48. PubMed ID: 22326492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional effects of the spatial-varying lens mechanical properties in accommodation.
    Schumacher J; Lopez RR; Larin K; Manns F; Scarcelli G
    JPhys Photonics; 2024 Jul; 6(3):035021. PubMed ID: 38975030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia.
    Garner WH; Garner MH
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2851-63. PubMed ID: 27233034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study on the viscoelastic properties of human and animal lenses.
    Sharma PK; Busscher HJ; Terwee T; Koopmans SA; van Kooten TG
    Exp Eye Res; 2011 Nov; 93(5):681-8. PubMed ID: 21910988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical plasticity in fish lenses.
    Kröger RH
    Prog Retin Eye Res; 2013 May; 34():78-88. PubMed ID: 23262260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Modeling Approach for Investigating Opto-Mechanical Relationships in the Human Eye Lens.
    Wang K; Venetsanos DT; Hoshino M; Uesugi K; Yagi N; Pierscionek BK
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):999-1006. PubMed ID: 31395531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical and biometric relationships of the isolated pig crystalline lens.
    Vilupuru AS; Glasser A
    Ophthalmic Physiol Opt; 2001 Jul; 21(4):296-311. PubMed ID: 11430624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Questioning our classical understanding of accommodation and presbyopia.
    Adler-Grinberg D
    Am J Optom Physiol Opt; 1986 Jul; 63(7):571-80. PubMed ID: 3526908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.