These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38647381)

  • 21. Ordered hierarchical superlattice amplifies coated-CeO
    Gallucci N; Appavou MS; Cowieson N; D'Errico G; Di Girolamo R; Lettieri S; Sica F; Vitiello G; Paduano L
    J Colloid Interface Sci; 2024 Apr; 659():926-935. PubMed ID: 38219311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Precision Calculation of Nanoparticle (Nanocrystal) Potentials of Mean Force and Internal Energies.
    Upah A; Thomas A; Hallstrom J; Travesset A
    J Chem Theory Comput; 2024 Feb; 20(4):1559-1567. PubMed ID: 37956245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering.
    Marino E; Rosen DJ; Yang S; Tsai EHR; Murray CB
    Nano Lett; 2023 May; 23(10):4250-4257. PubMed ID: 37184728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid-Fluid Interface.
    Balazs DM; Dunbar TA; Smilgies DM; Hanrath T
    Langmuir; 2020 Jun; 36(22):6106-6115. PubMed ID: 32390432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metallurgy of soft spheres with hard core: From BCC to Frank-Kasper phases.
    Pansu B; Sadoc JF
    Eur Phys J E Soft Matter; 2017 Nov; 40(11):102. PubMed ID: 29177986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly.
    Yadav HO; Shrivastav G; Agarwal M; Chakravarty C
    J Chem Phys; 2016 Jun; 144(24):244901. PubMed ID: 27369538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication.
    Huang X; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2021 Mar; 143(11):4234-4243. PubMed ID: 33687203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable Frank-Kasper phases of self-assembled, soft matter spheres.
    Reddy A; Buckley MB; Arora A; Bates FS; Dorfman KD; Grason GM
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10233-10238. PubMed ID: 30249659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.
    Yu Y; Yu D; Orme CA
    Nano Lett; 2017 Jun; 17(6):3862-3869. PubMed ID: 28511013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Free-standing nanoparticle superlattice sheets controlled by DNA.
    Cheng W; Campolongo MJ; Cha JJ; Tan SJ; Umbach CC; Muller DA; Luo D
    Nat Mater; 2009 Jun; 8(6):519-25. PubMed ID: 19404241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The fcc-bcc Bain path in In-Sn and related alloys at ambient and high pressure.
    Degtyareva VF
    J Phys Condens Matter; 2009 Mar; 21(9):095702. PubMed ID: 21817405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting chiral nanostructures, lattices and superlattices in complex multicomponent nanoparticle self-assembly.
    Hur K; Hennig RG; Escobedo FA; Wiesner U
    Nano Lett; 2012 Jun; 12(6):3218-23. PubMed ID: 22587566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies.
    Landman U; Luedtke WD
    Faraday Discuss; 2004; 125():1-22; discussion 99-116. PubMed ID: 14750661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior.
    Cordeiro MA; Leite ER; Stach EA
    Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent cavitation under solvophobic confinement.
    Ashbaugh HS
    J Chem Phys; 2013 Aug; 139(6):064702. PubMed ID: 23947875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-pressure behavior of hydrophobically coated gold nanoparticle supercrystals: role of the structure.
    Balédent V; Goldmann C; Ibrahim H; Pansu B
    Soft Matter; 2023 May; 19(17):3113-3120. PubMed ID: 37039530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand structure and adsorption free energy of nanocrystals on solid substrates.
    Pham M; Travesset A
    J Chem Phys; 2020 Nov; 153(20):204701. PubMed ID: 33261491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.