BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38647395)

  • 1. iLight2: A near-infrared optogenetic tool for gene transcription with low background activation.
    Baloban M; Kasatkina LA; Verkhusha VV
    Protein Sci; 2024 May; 33(5):e4993. PubMed ID: 38647395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-component near-infrared optogenetic systems for gene transcription regulation.
    Kaberniuk AA; Baloban M; Monakhov MV; Shcherbakova DM; Verkhusha VV
    Nat Commun; 2021 Jun; 12(1):3859. PubMed ID: 34162879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biliverdin Reductase-A Deficiency Brighten and Sensitize Biliverdin-binding Chromoproteins.
    Kobachi K; Kuno S; Sato S; Sumiyama K; Matsuda M; Terai K
    Cell Struct Funct; 2020 Aug; 45(2):131-141. PubMed ID: 32581154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.
    Redchuk TA; Kaberniuk AA; Verkhusha VV
    Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering an E. coli Near-Infrared Light Sensor.
    Ong NT; Olson EJ; Tabor JJ
    ACS Synth Biol; 2018 Jan; 7(1):240-248. PubMed ID: 29091422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
    Shcherbakova DM; Stepanenko OV; Turoverov KK; Verkhusha VV
    Trends Biotechnol; 2018 Dec; 36(12):1230-1243. PubMed ID: 30041828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.
    Kaberniuk AA; Shemetov AA; Verkhusha VV
    Nat Methods; 2016 Jul; 13(7):591-7. PubMed ID: 27159085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model.
    Kasatkina LA; Ma C; Matlashov ME; Vu T; Li M; Kaberniuk AA; Yao J; Verkhusha VV
    Nat Commun; 2022 May; 13(1):2813. PubMed ID: 35589810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Light-Controlled Gene Expression and Protein Targeting in Neurons and Non-neuronal Cells.
    Redchuk TA; Karasev MM; Omelina ES; Verkhusha VV
    Chembiochem; 2018 Jun; 19(12):1334-1340. PubMed ID: 29465801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Optogenetic Module for Conditional Protein Splicing.
    Karasev MM; Verkhusha VV; Shcherbakova DM
    J Mol Biol; 2023 Dec; 435(24):168360. PubMed ID: 37949312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-Continuous Wave Near-Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of C. elegans.
    Bansal A; Liu H; Jayakumar MK; Andersson-Engels S; Zhang Y
    Small; 2016 Apr; 12(13):1732-43. PubMed ID: 26849846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.
    Zheng B; Wang H; Pan H; Liang C; Ji W; Zhao L; Chen H; Gong X; Wu X; Chang J
    ACS Nano; 2017 Dec; 11(12):11898-11907. PubMed ID: 29064662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared (NIR) up-conversion optogenetics.
    Hososhima S; Yuasa H; Ishizuka T; Hoque MR; Yamashita T; Yamanaka A; Sugano E; Tomita H; Yawo H
    Sci Rep; 2015 Nov; 5():16533. PubMed ID: 26552717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.
    Ryu MH; Gomelsky M
    ACS Synth Biol; 2014 Nov; 3(11):802-10. PubMed ID: 24926804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared optogenetic pair for protein regulation and spectral multiplexing.
    Redchuk TA; Omelina ES; Chernov KG; Verkhusha VV
    Nat Chem Biol; 2017 Jun; 13(6):633-639. PubMed ID: 28346403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation.
    He L; Zhang Y; Ma G; Tan P; Li Z; Zang S; Wu X; Jing J; Fang S; Zhou L; Wang Y; Huang Y; Hogan PG; Han G; Zhou Y
    Elife; 2015 Dec; 4():. PubMed ID: 26646180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.