BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 38647395)

  • 41. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing.
    Pakyari M; Farrokhi A; Maharlooei MK; Ghahary A
    Adv Wound Care (New Rochelle); 2013 Jun; 2(5):215-224. PubMed ID: 24527344
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module.
    Toettcher JE; Weiner OD; Lim WA
    Cell; 2013 Dec; 155(6):1422-34. PubMed ID: 24315106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.
    Müller K; Engesser R; Metzger S; Schulz S; Kämpf MM; Busacker M; Steinberg T; Tomakidi P; Ehrbar M; Nagy F; Timmer J; Zubriggen MD; Weber W
    Nucleic Acids Res; 2013 Apr; 41(7):e77. PubMed ID: 23355611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex.
    Beaudoin GM; Lee SH; Singh D; Yuan Y; Ng YG; Reichardt LF; Arikkath J
    Nat Protoc; 2012 Sep; 7(9):1741-54. PubMed ID: 22936216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition in Escherichia coli.
    Bréchemier-Baey D; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2012 Sep; 85(5):1007-19. PubMed ID: 22788997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatiotemporal control of cell signalling using a light-switchable protein interaction.
    Levskaya A; Weiner OD; Lim WA; Voigt CA
    Nature; 2009 Oct; 461(7266):997-1001. PubMed ID: 19749742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The phytochrome red/far-red photoreceptor superfamily.
    Sharrock RA
    Genome Biol; 2008; 9(8):230. PubMed ID: 18771590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Therapeutic applications of bilirubin and biliverdin in transplantation.
    Ollinger R; Wang H; Yamashita K; Wegiel B; Thomas M; Margreiter R; Bach FH
    Antioxid Redox Signal; 2007 Dec; 9(12):2175-85. PubMed ID: 17919067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro.
    Liang CC; Park AY; Guan JL
    Nat Protoc; 2007; 2(2):329-33. PubMed ID: 17406593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Harnessing phytochrome's glowing potential.
    Fischer AJ; Lagarias JC
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17334-9. PubMed ID: 15548612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of artificial transcriptional activators with rigid poly-L-proline linkers.
    Arora PS; Ansari AZ; Best TP; Ptashne M; Dervan PB
    J Am Chem Soc; 2002 Nov; 124(44):13067-71. PubMed ID: 12405833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reaching out. Locating and lengthening the interdomain linker in AraC protein.
    Eustance RJ; Bustos SA; Schleif RF
    J Mol Biol; 1994 Sep; 242(4):330-8. PubMed ID: 7932693
    [TBL] [Abstract][Full Text] [Related]  

  • 53. iLight2: A near-infrared optogenetic tool for gene transcription with low background activation.
    Baloban M; Kasatkina LA; Verkhusha VV
    Protein Sci; 2024 May; 33(5):e4993. PubMed ID: 38647395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
    Shcherbakova DM; Stepanenko OV; Turoverov KK; Verkhusha VV
    Trends Biotechnol; 2018 Dec; 36(12):1230-1243. PubMed ID: 30041828
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A guide to the optogenetic regulation of endogenous molecules.
    Manoilov KY; Verkhusha VV; Shcherbakova DM
    Nat Methods; 2021 Sep; 18(9):1027-1037. PubMed ID: 34446923
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescent proteins for in vivo imaging, where's the biliverdin?
    Montecinos-Franjola F; Lin JY; Rodriguez EA
    Biochem Soc Trans; 2020 Dec; 48(6):2657-2667. PubMed ID: 33196077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.