These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38647542)

  • 1. The effect of ionic redistributions on the microwave dielectric response of cytosol water upon glucose uptake.
    Galindo C; Livshits L; Tarabeih L; Barshtein G; Einav S; Feldman Y
    Eur Biophys J; 2024 May; 53(4):183-192. PubMed ID: 38647542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of glucose uptake to erythrocytes: microwave dielectric response.
    Galindo C; Latypova L; Barshtein G; Livshits L; Arbell D; Einav S; Feldman Y
    Eur Biophys J; 2022 Jul; 51(4-5):353-363. PubMed ID: 35532810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in cellular calcium handling as a result of systemic calcium deficiency in the developing chick embryo: I. Erythrocytes.
    Koide M; Smith CA; Miyahara T; Tuan RS
    J Cell Physiol; 1992 Dec; 153(3):626-35. PubMed ID: 1447322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A crosstalk between Na⁺ channels, Na⁺/K⁺ pump and mitochondrial Na⁺ transporters controls glucose-dependent cytosolic and mitochondrial Na⁺ signals.
    Nita II; Hershfinkel M; Lewis EC; Sekler I
    Cell Calcium; 2015 Feb; 57(2):69-75. PubMed ID: 25564413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric Response of Cytoplasmic Water and Its Connection to the Vitality of Human Red Blood Cells. II. The Influence of Storage.
    Levy E; David M; Barshtein G; Yedgar S; Livshits L; Ben Ishai P; Feldman Y
    J Phys Chem B; 2017 May; 121(20):5273-5278. PubMed ID: 28453275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells.
    Kim D; Cragoe EJ; Smith TW
    Circ Res; 1987 Feb; 60(2):185-93. PubMed ID: 2436825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometric relationship between Na(+) ions transported and glucose consumed in human erythrocytes: Bayesian analysis of (23)Na and (13)C NMR time course data.
    Puckeridge M; Chapman BE; Conigrave AD; Grieve SM; Figtree GA; Kuchel PW
    Biophys J; 2013 Apr; 104(8):1676-84. PubMed ID: 23601315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered red cell sodium transport in hypoparathyroidism: relation to serum calcium.
    Brickman AS; Stern N; Tuck ML
    J Clin Endocrinol Metab; 1986 Sep; 63(3):626-30. PubMed ID: 3734032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ouabain and furosemide on erythrocyte sodium and phosphate transport.
    Walter U
    Clin Pharmacol Ther; 1981 Dec; 30(6):709-17. PubMed ID: 6273055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of a high frequency electromagnetic field in the microwave range on red blood cells.
    Nguyen THP; Pham VTH; Baulin V; Croft RJ; Crawford RJ; Ivanova EP
    Sci Rep; 2017 Sep; 7(1):10798. PubMed ID: 28883444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Response of Cytoplasmic Water and Its Connection to the Vitality of Human Red Blood Cells: I. Glucose Concentration Influence.
    Levy E; Barshtein G; Livshits L; Ishai PB; Feldman Y
    J Phys Chem B; 2016 Oct; 120(39):10214-10220. PubMed ID: 27618444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.
    Bookchin RM; Etzion Z; Sorette M; Mohandas N; Skepper JN; Lew VL
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):8045-50. PubMed ID: 10859357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):59-79. PubMed ID: 894251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+).
    Arnon A; Hamlyn JM; Blaustein MP
    Am J Physiol Heart Circ Physiol; 2000 Aug; 279(2):H679-91. PubMed ID: 10924067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dog red blood cells. Adjustment of salt and water content in vitro.
    Parker JC
    J Gen Physiol; 1973 Aug; 62(2):147-56. PubMed ID: 4722565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of microwave effects on the vitality of nerves after blockage of active transport.
    McRee DI; Wachtel H
    Radiat Res; 1986 Dec; 108(3):260-8. PubMed ID: 3492008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of Na/Ca exchange in glucose-induced insulin release from rat pancreatic islets.
    Siegel EG; Wollheim CB; Renold AE; Sharp GW
    J Clin Invest; 1980 Nov; 66(5):996-1003. PubMed ID: 6776149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism.
    Taurin S; Dulin NO; Pchejetski D; Grygorczyk R; Tremblay J; Hamet P; Orlov SN
    J Physiol; 2002 Sep; 543(Pt 3):835-47. PubMed ID: 12231642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo.
    Duhm J; Göbel BO
    J Membr Biol; 1984; 77(3):243-54. PubMed ID: 6699906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of lipid peroxidation, protein glycation and elevation of membrane ion pump activity by taurine in RBC exposed to high glucose.
    Nandhini TA; Anuradha CV
    Clin Chim Acta; 2003 Oct; 336(1-2):129-35. PubMed ID: 14500045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.