These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38647542)

  • 21. Red blood cell sodium transport and phosphate release in uremia.
    Walter U; Becht E
    Nephron; 1983; 34(1):35-41. PubMed ID: 6304546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of triphenyltin on cytosolic Na(+) and Ca(2+) response to glucose and acetylcholine in pancreatic beta-cells from hamster.
    Miura Y; Matsui H
    Toxicol Appl Pharmacol; 2001 Jul; 174(1):1-9. PubMed ID: 11437643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The uptake and hydrolysis of p-nitrophenyl phosphate by red cells in relation to ATP hydrolysis by the sodium pump.
    Cotterrell D; Whittam R
    J Physiol; 1972 Jun; 223(3):773-802. PubMed ID: 4339904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on the dehydrating effect of the red cell Na+/K+-pump in nystatin-treated cells with varying Na+ and water contents.
    Clark MR; Guatelli JC; White AT; Shohet SB
    Biochim Biophys Acta; 1981 Sep; 646(3):422-32. PubMed ID: 7284370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic mechanism of ouabain-induced swelling of leech Retzius neurons.
    Dierkes PW; Wüsten HJ; Klees G; Müller A; Hochstrate P
    Pflugers Arch; 2006 Apr; 452(1):25-35. PubMed ID: 16341876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ouabain-insensitive effects of metabolism on ion and water content of red blood cells.
    Parker JC
    Am J Physiol; 1971 Jul; 221(1):338-42. PubMed ID: 5555806
    [No Abstract]   [Full Text] [Related]  

  • 27. Microwave dielectric studies on proteins, tissues, and heterogeneous suspensions.
    Foster KR; Schepps JL; Epstein BR
    Bioelectromagnetics; 1982; 3(1):29-43. PubMed ID: 7082390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The alpha 1 Na(+)-K+ pump of the Dahl salt-sensitive rat exhibits altered Na+ modulation of K+ transport in red blood cells.
    Canessa M; Romero JR; Ruiz-Opazo N; Herrera VL
    J Membr Biol; 1993 Jun; 134(2):107-22. PubMed ID: 8411114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The alteration by ouabain of calcium movements in human red cell ghosts.
    Isern M; Romero PJ
    J Physiol; 1977 Jan; 264(2):411-28. PubMed ID: 839460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of ouabain and ethacrynic acid on the intracellular sodium and potassium concentrations in renal medullary slices incubated in cold potassium-free ringer solution and re-incubated at 37 degrees C in the presence of external potassium.
    Law RO
    J Physiol; 1976 Jan; 254(3):743-58. PubMed ID: 1255504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake of 3,5,3'-triiodothyronine and thyroxine by red blood and thymus cells.
    Galton VA; St Germain DL; Whittemore S
    Endocrinology; 1986 May; 118(5):1918-23. PubMed ID: 3486116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Instrumental role of Na+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells.
    Czyz A; Baranauskas G; Kiedrowski L
    J Neurochem; 2002 Apr; 81(2):379-89. PubMed ID: 12064485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes.
    Post RL; Albright CD; Dayani K
    J Gen Physiol; 1967 May; 50(5):1201-20. PubMed ID: 6033582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole.
    Stock C; Grønlien HK; Allen RD; Naitoh Y
    J Cell Sci; 2002 Jun; 115(Pt 11):2339-48. PubMed ID: 12006618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of sulfate, proline, and glucose transport systems in anterior cruciate and medial collateral ligament cells.
    Bhargava MM; Kinne-Saffran E; Kinne RK; Warren RF; Hannafin JA
    Can J Physiol Pharmacol; 2005 Nov; 83(11):1025-30. PubMed ID: 16391711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx.
    Simonsen LO; Harbak H; Bennekou P
    Blood Cells Mol Dis; 2011 Dec; 47(4):214-25. PubMed ID: 21962619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
    Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential regulation of cation transport of vascular smooth muscle cells in a high glucose concentration milieu.
    Kuriyama S; Tokudome G; Tomonari H; Utsunomiya Y; Matsui K; Hashimoto T; Sakai O
    Diabetes Res Clin Pract; 1994 Jun; 24(2):77-84. PubMed ID: 7956712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetrodotoxin-sensitive uptake of ions and water byslices of rat brain in vitro.
    Okamoto K; Quastel JH
    Biochem J; 1970 Nov; 120(1):37-47. PubMed ID: 5494227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium movements across the membrane of human red cells.
    Schatzmann HJ; Vincenzi FF
    J Physiol; 1969 Apr; 201(2):369-95. PubMed ID: 4238381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.