BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3864780)

  • 1. Tetracyanonickelate probes the active site of sulfur-free rhodanese.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Dec; 260(29):15516-21. PubMed ID: 3864780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodanese-tetracyanonickelate. An active site complex that slows sulfur-free rhodanese conversion to inert conformers.
    Chow SF; Horowitz P
    J Biol Chem; 1986 Jun; 261(16):7264-9. PubMed ID: 3458706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential binding of the fluorescent probe 8-anilinonaphthalene-2-sulfonic acid to rhodanese catalytic intermediates.
    Horowitz PM; Criscimagna NL
    Biochemistry; 1985 May; 24(11):2587-93. PubMed ID: 3861197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis.
    Horowitz P; Criscimagna NL
    J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state.
    Lijk LJ; Kalk KH; Brandenburg NP; Hol WG
    Biochemistry; 1983 Jun; 22(12):2952-7. PubMed ID: 6575830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiosulfate: cyanide sulfurtransferase (rhodanese).
    Westley J
    Methods Enzymol; 1981; 77():285-91. PubMed ID: 6948991
    [No Abstract]   [Full Text] [Related]  

  • 8. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceptor substrate-potentiated inactivation of bovine liver rhodanese.
    Aird BA; Horowitz PM
    J Biol Chem; 1988 Oct; 263(30):15270-6. PubMed ID: 3170581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics.
    Libiad M; Sriraman A; Banerjee R
    J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Aug; 260(17):9593-7. PubMed ID: 3860502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfhydryl-directed triggering of conformational changes in the enzyme rhodanese.
    Horowitz PM; Criscimagna NL
    J Biol Chem; 1988 Jul; 263(21):10278-83. PubMed ID: 3164722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative inactivation of the enzyme rhodanese by reduced nicotinamide adenine dinucleotide.
    Horowitz PM; Falksen K
    J Biol Chem; 1986 Dec; 261(36):16953-6. PubMed ID: 3097018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S; Bonomi F; Cerletti P
    Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L; Heinrikson RL; Westley J
    J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms.
    Cannella C; Berni R; Rosato N; Finazzi-Agrò A
    Biochemistry; 1986 Nov; 25(23):7319-23. PubMed ID: 3467793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The differential functional stability of various forms of bovine liver rhodanese.
    Aird BA; Horowitz PM
    Biochim Biophys Acta; 1988 Aug; 956(1):30-8. PubMed ID: 3165676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid).
    Pensa B; Costa M; Pecci L; Cannella C; Cavallini D
    Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.