BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38647872)

  • 21. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain.
    Matano Y; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue.
    He J; Zhang W; Liu X; Xu N; Xiong P
    J Biosci Bioeng; 2016 Nov; 122(5):563-569. PubMed ID: 27209176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotium rolfsii UV-8 mutant.
    Deshpande MV
    Appl Biochem Biotechnol; 1992 Sep; 36(3):227-34. PubMed ID: 1288411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae.
    Lu J; Li X; Yang R; Yang L; Zhao J; Liu Y; Qu Y
    Bioresour Technol; 2013 Sep; 144():539-47. PubMed ID: 23890974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor.
    Xue D; Yao D; Sukumaran RK; You X; Wei Z; Gong C
    Bioresour Technol; 2020 Apr; 302():122902. PubMed ID: 32019709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments.
    Zhu JY; Gleisner R; Scott CT; Luo XL; Tian S
    Bioresour Technol; 2011 Oct; 102(19):8921-9. PubMed ID: 21824766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production.
    Jin M; Balan V; Gunawan C; Dale BE
    Biotechnol Bioeng; 2011 Jun; 108(6):1290-7. PubMed ID: 21280028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation.
    Sharma N; Kalra KL; Oberoi HS; Bansal S
    Indian J Microbiol; 2007 Dec; 47(4):310-6. PubMed ID: 23100683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.
    Lee WH; Nan H; Kim HJ; Jin YS
    J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation.
    Guo L; Zhang J; Hu F; Dy Ryu D; Bao J
    Biotechnol Bioeng; 2013 Oct; 110(10):2606-15. PubMed ID: 23568827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae.
    Sasaki K; Tsuge Y; Sasaki D; Teramura H; Inokuma K; Hasunuma T; Ogino C; Kondo A
    Bioresour Technol; 2015 Jun; 185():263-8. PubMed ID: 25776893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments.
    Suriyachai N; Weerasaia K; Laosiripojana N; Champreda V; Unrean P
    Bioresour Technol; 2013 Aug; 142():171-8. PubMed ID: 23735799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial
    Cunha JT; Romaní A; Inokuma K; Johansson B; Hasunuma T; Kondo A; Domingues L
    Biotechnol Biofuels; 2020; 13():138. PubMed ID: 32782474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw.
    Robak K; Balcerek M; Dziekońska-Kubczak U; Dziugan P
    Biotechnol Prog; 2019 May; 35(3):e2789. PubMed ID: 30773839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous saccharification and fermentation of corncobs with genetically modified Saccharomyces cerevisiae and characterization of their microstructure during hydrolysis.
    Song HT; Liu SH; Gao Y; Yang YM; Xiao WJ; Xia WC; Liu ZL; Li R; Ma XD; Jiang ZB
    Bioengineered; 2016 Apr; 7(3):198-204. PubMed ID: 27116398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST).
    Jin M; Lau MW; Balan V; Dale BE
    Bioresour Technol; 2010 Nov; 101(21):8171-8. PubMed ID: 20580549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila.
    Zhang Y; Sun T; Wu T; Li J; Hu D; Liu D; Li J; Tian C
    Metab Eng; 2023 Jul; 78():192-199. PubMed ID: 37348810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.