These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38647886)

  • 1. Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems.
    Chen K; Ma C; Cheng X; Wang Y; Guo K; Wu R; Zhu Z
    Bioresour Bioprocess; 2023 Jun; 10(1):36. PubMed ID: 38647886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Arhar S; Rauter T; Stolterfoht-Stock H; Lambauer V; Kratzer R; Winkler M; Karava M; Kourist R; Emmerstorfer-Augustin A
    Microb Cell Fact; 2024 Jan; 23(1):9. PubMed ID: 38172920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions.
    Tang R; Weng C; Peng X; Han Y
    Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of CO
    Nangle SN; Ziesack M; Buckley S; Trivedi D; Loh DM; Nocera DG; Silver PA
    Metab Eng; 2020 Nov; 62():207-220. PubMed ID: 32961296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose production by Cupriavidus necator from CO
    Löwe H; Beentjes M; Pflüger-Grau K; Kremling A
    Bioresour Technol; 2021 Jan; 319():124169. PubMed ID: 33254445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator.
    Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Bai Y; Yao B; Zhang J
    Bioresour Technol; 2022 Oct; 362():127806. PubMed ID: 36031135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth medium and electrolyte-How to combine the different requirements on the reaction solution in bioelectrochemical systems using
    Sydow A; Krieg T; Ulber R; Holtmann D
    Eng Life Sci; 2017 Jul; 17(7):781-791. PubMed ID: 32624824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor.
    Garrigues L; Maignien L; Lombard E; Singh J; Guillouet SE
    N Biotechnol; 2020 May; 56():16-20. PubMed ID: 31731039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO
    Kim S; Jang YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2022 Nov; 21(1):231. PubMed ID: 36335362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products.
    Yu J
    World J Microbiol Biotechnol; 2018 Jun; 34(7):89. PubMed ID: 29886519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO
    Panich J; Fong B; Singer SW
    Trends Biotechnol; 2021 Apr; 39(4):412-424. PubMed ID: 33518389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoorganotrophic electrofermentation by Cupriavidus necator using redox mediators.
    Gemünde A; Rossini E; Lenz O; Frielingsdorf S; Holtmann D
    Bioelectrochemistry; 2024 Aug; 158():108694. PubMed ID: 38518507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential processing with fermentative Caldicellulosiruptor kronotskyensis and chemolithoautotrophic Cupriavidus necator for converting rice straw and CO
    Peng X; Kelly RM; Han Y
    Biotechnol Bioeng; 2018 Jun; 115(6):1624-1629. PubMed ID: 29476619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16.
    Aboulnaga EA; Zou H; Selmer T; Xian M
    J Biotechnol; 2018 May; 274():15-27. PubMed ID: 29549002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Hexose Utilization Pathways of
    Wang L; Luo H; Yao B; Yao J; Zhang J
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203719
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production.
    Hanko EKR; Sherlock G; Minton NP; Malys N
    Metab Eng; 2022 Jul; 72():24-34. PubMed ID: 35149227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Poly(3-hydroxybutyrate-
    Tanaka K; Orita I; Fukui T
    Bioengineering (Basel); 2023 Nov; 10(11):. PubMed ID: 38002428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16.
    Wang L; Yao J; Tu T; Yao B; Zhang J
    Bioresour Technol; 2024 Apr; 398():130538. PubMed ID: 38452952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Problems and corresponding strategies for converting CO
    Tang R; Yuan X; Yang J
    Biotechnol Adv; 2023 Oct; 67():108183. PubMed ID: 37286176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.