These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38647946)

  • 61. Enhancement of recombinant BmK AngM1 production in Pichia pastoris by regulating gene dosage, co-expressing with chaperones and fermenting in fed-batch mode.
    Wang QH; Liang L; Liu WC; Gong T; Chen JJ; Hou Q; Yang JL; Zhu P
    J Asian Nat Prod Res; 2017 Jun; 19(6):581-594. PubMed ID: 28376654
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolic Engineering of
    Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S
    ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.
    Wriessnegger T; Augustin P; Engleder M; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Zellnig G; Schwab H; Pichler H
    Metab Eng; 2014 Jul; 24():18-29. PubMed ID: 24747046
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Engineering the oleaginous yeast
    Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A
    Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Production of LYZL6, a novel human c-type lysozyme, in recombinant Pichia pastoris employing high cell density fed-batch fermentation.
    Zhou X; Yu Y; Tao J; Yu L
    J Biosci Bioeng; 2014 Oct; 118(4):420-5. PubMed ID: 24745549
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Innovative Bioprocess Strategies Combining Physiological Control and Strain Engineering of
    Gasset A; Garcia-Ortega X; Garrigós-Martínez J; Valero F; Montesinos-Seguí JL
    Front Bioeng Biotechnol; 2022; 10():818434. PubMed ID: 35155391
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biosynthesis of germacrene A carboxylic acid in chicory roots. Demonstration of a cytochrome P450 (+)-germacrene a hydroxylase and NADP+-dependent sesquiterpenoid dehydrogenase(s) involved in sesquiterpene lactone biosynthesis.
    de Kraker JW; Franssen MC; Dalm MC; de Groot A; Bouwmeester HJ
    Plant Physiol; 2001 Apr; 125(4):1930-40. PubMed ID: 11299372
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production.
    Heyland J; Fu J; Blank LM; Schmid A
    Biotechnol Bioeng; 2010 Oct; 107(2):357-68. PubMed ID: 20552674
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Germacrene A is a product of the aristolochene synthase-mediated conversion of farnesylpyrophosphate to aristolochene.
    Calvert MJ; Ashton PR; Allemann RK
    J Am Chem Soc; 2002 Oct; 124(39):11636-41. PubMed ID: 12296728
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolic Engineering of
    Feng L; Xu J; Ye C; Gao J; Huang L; Xu Z; Lian J
    J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108948
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent Advances in Pichia pastoris as Host for Heterologous Expression System for Lipases: A Review.
    Valero F
    Methods Mol Biol; 2018; 1835():205-216. PubMed ID: 30109654
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production.
    Urui M; Yamada Y; Ikeda Y; Nakagawa A; Sato F; Minami H; Shitan N
    Microb Cell Fact; 2021 Oct; 20(1):200. PubMed ID: 34663314
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli.
    Han GH; Kim SK; Yoon PK; Kang Y; Kim BS; Fu Y; Sung BH; Jung HC; Lee DH; Kim SW; Lee SG
    Microb Cell Fact; 2016 Nov; 15(1):185. PubMed ID: 27825357
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.
    Prabhu AA; Boro B; Bharali B; Chakraborty S; Dasu VV
    Curr Pharm Biotechnol; 2017; 18(15):1200-1223. PubMed ID: 29595107
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production.
    Li P; Sun H; Chen Z; Li Y; Zhu T
    Microb Cell Fact; 2015 Feb; 14():22. PubMed ID: 25889970
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production.
    Liu WC; Inwood S; Gong T; Sharma A; Yu LY; Zhu P
    Crit Rev Biotechnol; 2019 Mar; 39(2):258-271. PubMed ID: 30599783
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [One-pot synthesis of chondroitin sulfate A by engineered
    Sheng J; Jin X; Xu R; Wang Y; Kang Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2594-2605. PubMed ID: 35871627
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in
    Fina A; Heux S; Albiol J; Ferrer P
    Front Bioeng Biotechnol; 2022; 10():942304. PubMed ID: 35935509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.