These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38648688)

  • 1. Upgrading anode graphite from retired lithium ion batteries via solid-phase exfoliation by mechanochemical strategy.
    Wang X; Yu H; Zhou J; Wang H
    Waste Manag; 2024 Jun; 182():102-112. PubMed ID: 38648688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries.
    Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive approach for the recycling of anode materials from spent lithium-ion batteries: Separation, lithium recovery, and graphite reutilization as environmental catalyst.
    Kong Y; Takaya Y; Córdova-Udaeta M; Tokoro C
    Waste Manag; 2024 Nov; 188():60-71. PubMed ID: 39116657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Strategy for Anode Recovery and Upgrading by In Situ Growth of Iron-Based Oxides on Microwave-Puffed Graphite.
    Chen W; Sun J; Jia P; Wang W; Song Z; Wang Z; Zhao X; Mao Y
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-separation combined with reduction roasting for high-quality recovery of graphite and lithium from spent lithium ion batteries.
    Zhang G; Jiang T; He Y; Wang H; Yuan X
    Waste Manag; 2024 Oct; 187():244-251. PubMed ID: 39074419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review.
    Gao Y; Zhang S; Lin S; Li Z; Chen Y; Wang C
    Environ Res; 2024 Apr; 247():118216. PubMed ID: 38242420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid.
    Liu G; Ma L; Xi X; Nie Z
    Waste Manag; 2024 Apr; 178():105-114. PubMed ID: 38387254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel graphene-polysulfide anode material for high-performance lithium-ion batteries.
    Ai W; Xie L; Du Z; Zeng Z; Liu J; Zhang H; Huang Y; Huang W; Yu T
    Sci Rep; 2013; 3():2341. PubMed ID: 23903017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From graphite of used lithium-ion batteries to holey graphite coated by carbon with enhanced lithium storage capability.
    Huang S; Fan Q; Chen X; Wu Y; Liu L; Yu Z; Xu J
    J Colloid Interface Sci; 2024 Dec; 676():197-206. PubMed ID: 39024820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.