BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38648734)

  • 21. Updated breast CT dose coefficients (DgN
    Hernandez AM; Becker AE; Boone JM
    Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.
    Moon WK; Chang JF; Lo CM; Chang JM; Lee SH; Shin SU; Huang CS; Chang RF
    Comput Methods Programs Biomed; 2018 Feb; 154():99-107. PubMed ID: 29249352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The relationship between anatomic noise and volumetric breast density for digital mammography.
    Mainprize JG; Tyson AH; Yaffe MJ
    Med Phys; 2012 Aug; 39(8):4660-8. PubMed ID: 22894390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of water and lipid density with dual-energy mammography: validation in postmortem breasts.
    Molloi S; Ding H; Cho HM; Beidokhti D
    Eur Radiol; 2021 Feb; 31(2):938-946. PubMed ID: 32845386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A volumetric method for estimation of breast density on digitized screen-film mammograms.
    Pawluczyk O; Augustine BJ; Yaffe MJ; Rico D; Yang J; Mawdsley GE; Boyd NF
    Med Phys; 2003 Mar; 30(3):352-64. PubMed ID: 12674236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast and effective single-scan dual-energy cone-beam CT reconstruction and decomposition denoising based on dual-energy vectorization.
    Jiang X; Fang C; Hu P; Cui H; Zhu L; Yang Y
    Med Phys; 2021 Sep; 48(9):4843-4856. PubMed ID: 34289129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.
    Samei E; Saunders RS
    Phys Med Biol; 2011 Oct; 56(19):6359-78. PubMed ID: 21908902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generative compressed breast shape model for digital mammography and digital breast tomosynthesis.
    Pinto MC; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 May; 50(5):2928-2938. PubMed ID: 36433824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.
    Kiarashi N; Nolte AC; Sturgeon GM; Segars WP; Ghate SV; Nolte LW; Samei E; Lo JY
    Med Phys; 2015 Jul; 42(7):4116-26. PubMed ID: 26133612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative volumetric breast density estimation using phase contrast mammography.
    Wang Z; Hauser N; Kubik-Huch RA; D'Isidoro F; Stampanoni M
    Phys Med Biol; 2015 May; 60(10):4123-35. PubMed ID: 25933258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of enhancement quantification from virtual unenhanced images to true unenhanced images in multiphase renal Dual-Energy computed tomography: A phantom study.
    Olivia Popnoe D; Ng CS; Zhou S; Cheenu Kappadath S; Pan T; Kyle Jones A
    J Appl Clin Med Phys; 2019 Aug; 20(8):171-179. PubMed ID: 31423728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating attenuation correction strategies in a dedicated, single-gantry breast PET-tomosynthesis scanner.
    Krishnamoorthy S; Vent T; Barufaldi B; Maidment ADA; Karp JS; Surti S
    Phys Med Biol; 2020 Dec; 65(23):235028. PubMed ID: 33113520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of breast density using dual-energy mammography with liquid phantom calibration.
    Lam AR; Ding H; Molloi S
    Phys Med Biol; 2014 Jul; 59(14):3985-4000. PubMed ID: 24971873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy of Dual-Energy Computed Tomography Techniques for Fat Quantification in Comparison With Magnetic Resonance Proton Density Fat Fraction and Single-Energy Computed Tomography in an Anthropomorphic Phantom Environment.
    Wu ZJ; Hippe DS; Zamora DA; Briller N; Amin KA; Kolokythas O; Mileto A
    J Comput Assist Tomogr; 2021 Nov-Dec 01; 45(6):877-887. PubMed ID: 34469903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.
    Castillo-García M; Chevalier M; Garayoa J; Rodriguez-Ruiz A; García-Pinto D; Valverde J
    Acad Radiol; 2017 Jul; 24(7):802-810. PubMed ID: 28214227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulations of case difficulty in digital breast tomosynthesis using virtual clinical trials.
    Barufaldi B; Vent TL; Bakic PR; Maidment ADA
    Med Phys; 2022 Apr; 49(4):2220-2232. PubMed ID: 35212403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.
    Vedantham S; Shi L; Michaelsen KE; Krishnaswamy V; Pogue BW; Poplack SP; Karellas A; Paulsen KD
    Biomed Phys Eng Express; 2015; 1(4):. PubMed ID: 26941961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.