These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38648793)

  • 1. A toe-inspired rigid-flexible coupling wheel design method for improving the terrain adaptability of a sewer robot.
    Zhang J; Chen X; Shen W; Song J; Zheng Y
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38648793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic Feet With Soft Toes for Adaptive, Versatile, and Stable Locomotion of an Inchworm-Inspired Pipe Crawling Robot.
    Khan MB; Chuthong T; Homchanthanakul J; Manoonpong P
    Front Bioeng Biotechnol; 2022; 10():842816. PubMed ID: 35252150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of robot hand with pneumatic actuator and construct of master-slave system.
    Nishino S; Tsujiuchi N; Koizumi T; Komatsubara H; Kudawara T; Shimizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3027-30. PubMed ID: 18002632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure.
    Zhou P; Yao J; Zhang S; Wei C; Zhang H; Qi S
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35998612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of toe length, foot arch length and toe joint axis on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Hum Mov Sci; 2020 Apr; 70():102594. PubMed ID: 32217212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Research of All-Terrain Wheel-Legged Robot.
    Zhao J; Han T; Wang S; Liu C; Fang J; Liu S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 10. Dynamic modeling and simulation of inchworm movement towards bio-inspired soft robot design.
    Zhang J; Wang T; Wang J; Li B; Hong J; Zhang JXJ; Wang MY
    Bioinspir Biomim; 2019 Sep; 14(6):066012. PubMed ID: 31549687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and dynamic analysis of jumping wheel-legged robot in complex terrain environment.
    Guo T; Liu J; Liang H; Zhang Y; Chen W; Xia X; Wang M; Wang Z
    Front Neurorobot; 2022; 16():1066714. PubMed ID: 36531915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an actuator with bionic claw hook-suction cup hybrid structure for soft robot.
    Wang X; Lin A; Yuan W; Hu H; Cheng G; Ding J
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38631357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and kinematic of a dexterous bioinspired elephant trunk robot with variable diameter.
    Zhou P; Yao J; Wei C; Zhang S; Zhang H; Qi S
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling, Simulation and Implementation of All Terrain Adaptive Five DOF Robot.
    Wang Z; Zhao J; Zeng G
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic lizard robot for adapting to Martian surface terrain.
    Chen G; Qiao L; Zhou Z; Lei X; Zou M; Richter L; Ji A
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38452382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Structural Characteristics on Attachment-Detachment Mechanics of a Rigid-Flexible Coupling Adhesive Unit.
    Jiang Q; Wang L; Weng Z; Wang Z; Dai Z; Chen W
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 36134923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The experimental investigation of foot slip-turning motion of the musculoskeletal robot on toe joints.
    Nipatphonsakun K; Kawasetsu T; Hosoda K
    Front Robot AI; 2023; 10():1187297. PubMed ID: 37731813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wrist-inspired suspended tubercle-type tensegrity joint with variable stiffness capacity.
    Xie X; Xiong D; Wen JZ
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36351302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.