These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38648990)

  • 1. Automatic classification of dog barking using deep learning.
    Gómez-Armenta JR; Pérez-Espinosa H; Fernández-Zepeda JA; Reyes-Meza V
    Behav Processes; 2024 May; 218():105028. PubMed ID: 38648990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of dog barks: a machine learning approach.
    Molnár C; Kaplan F; Roy P; Pachet F; Pongrácz P; Dóka A; Miklósi A
    Anim Cogn; 2008 Jul; 11(3):389-400. PubMed ID: 18197442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hunting dogs bark differently when they encounter different animal species.
    Policht R; Matějka O; Benediktová K; Adámková J; Hart V
    Sci Rep; 2021 Sep; 11(1):17407. PubMed ID: 34556674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data.
    Kim Y; Sa J; Chung Y; Park D; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking.
    Larrañaga A; Bielza C; Pongrácz P; Faragó T; Bálint A; Larrañaga P
    Anim Cogn; 2015 Mar; 18(2):405-21. PubMed ID: 25308549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dogs discriminate between barks: the effect of context and identity of the caller.
    Molnár C; Pongrácz P; Faragó T; Dóka A; Miklósi A
    Behav Processes; 2009 Oct; 82(2):198-201. PubMed ID: 19596426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic classification of grouper species by their sounds using deep neural networks.
    Ibrahim AK; Zhuang H; Chérubin LM; Schärer-Umpierre MT; Erdol N
    J Acoust Soc Am; 2018 Sep; 144(3):EL196. PubMed ID: 30424627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional network for animal sound classification and source attribution using dual audio recordings.
    Oikarinen T; Srinivasan K; Meisner O; Hyman JB; Parmar S; Fanucci-Kiss A; Desimone R; Landman R; Feng G
    J Acoust Soc Am; 2019 Feb; 145(2):654. PubMed ID: 30823820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic detection and classification of marmoset vocalizations using deep and recurrent neural networks.
    Zhang YJ; Huang JF; Gong N; Ling ZH; Hu Y
    J Acoust Soc Am; 2018 Jul; 144(1):478. PubMed ID: 30075670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey of public attitudes towards barking dogs in New Zealand.
    Flint EL; Minot EO; Perry PE; Stafford KJ
    N Z Vet J; 2014 Nov; 62(6):321-7. PubMed ID: 24869899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barking in family dogs: an ethological approach.
    Pongrácz P; Molnár C; Miklósi A
    Vet J; 2010 Feb; 183(2):141-7. PubMed ID: 19181546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can humans discriminate between dogs on the base of the acoustic parameters of barks?
    Molnár C; Pongrácz P; Dóka A; Miklósi A
    Behav Processes; 2006 Jul; 73(1):76-83. PubMed ID: 16678361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks.
    Premoli M; Baggi D; Bianchetti M; Gnutti A; Bondaschi M; Mastinu A; Migliorati P; Signoroni A; Leonardi R; Memo M; Bonini SA
    PLoS One; 2021; 16(1):e0244636. PubMed ID: 33465075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The harmonic-to-noise ratio applied to dog barks.
    Riede T; Herzel H; Hammerschmidt K; Brunnberg L; Tembrock G
    J Acoust Soc Am; 2001 Oct; 110(4):2191-7. PubMed ID: 11681395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound.
    Roy TS; Roy JK; Mandal N
    Med Biol Eng Comput; 2023 Sep; 61(9):2417-2439. PubMed ID: 37103637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LwF-ECG: Learning-without-forgetting approach for electrocardiogram heartbeat classification based on memory with task selector.
    Ammour N; Alhichri H; Bazi Y; Alajlan N
    Comput Biol Med; 2021 Oct; 137():104807. PubMed ID: 34496312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.