These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38649277)

  • 1. Reorientation of Hydrogen Bonds Renders Unusual Enhancement in Thermal Transport of Water in Nanoconfined Environments.
    Gao Y; Chen Z; Zhang Y; Wen Y; Yu X; Shan B; Xu B; Chen R
    Nano Lett; 2024 May; 24(17):5379-5386. PubMed ID: 38649277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity and structural behavior of confined H
    Yousefi F; Farzadian O; Shafiee M
    Nanotechnology; 2024 Mar; 35(21):. PubMed ID: 38335554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.
    Laage D; Thompson WH
    J Chem Phys; 2012 Jan; 136(4):044513. PubMed ID: 22299897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity temperature dependence of water confined in nanoporous silicon.
    Wang X; Gonçalves W; Lacroix D; Isaiev M; Gomès S; Termentzidis K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35405665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected Behavior in Thermal Conductivity of Confined Monolayer Water.
    Zhao Z; Jin Y; Zhou R; Sun C; Huang X
    J Phys Chem B; 2023 May; 127(18):4090-4098. PubMed ID: 37105181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical thermal transport in nanoconfined water.
    Zhao Z; Zhou R; Sun C
    J Chem Phys; 2020 Dec; 153(23):234701. PubMed ID: 33353331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins of the non-exponential reorientation dynamics of nanoconfined water.
    Fogarty AC; Duboué-Dijon E; Laage D; Thompson WH
    J Chem Phys; 2014 Nov; 141(18):18C523. PubMed ID: 25399188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit.
    Han S; Kumar P; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041202. PubMed ID: 19518217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniqueness of Nanoscale Confinement for Fast Water Transport: Effect of Nanotube Diameter and Hydrophobicity.
    Sahu P; Ali SM
    J Phys Chem B; 2024 Jan; 128(1):222-243. PubMed ID: 38149848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman and IR spectra of water under graphene nanoconfinement at ambient and extreme pressure-temperature conditions: a first-principles study.
    Hou R; Li C; Pan D
    Faraday Discuss; 2024 Feb; 249(0):181-194. PubMed ID: 37791622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study.
    Seo Y; Song Y; Schatz GC; Hwang H
    J Phys Chem B; 2018 Aug; 122(34):8174-8184. PubMed ID: 30086632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustable diffusion enhancement of water molecules in a nanoscale water bridge.
    Lu Y; Chen J
    Nanoscale; 2021 Jan; 13(2):1000-1005. PubMed ID: 33367386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is there a liquid-liquid transition in confined water?
    Xu L; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14210-6. PubMed ID: 21923129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-like heat transfer in confined liquids.
    Frank M; Drikakis D
    Microfluid Nanofluidics; 2017; 21(9):148. PubMed ID: 31258457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From a bulk to nanoconfined water chain: bridge water at the pore of the (6,6) carbon nanotube.
    Jia Y; Lu X; Cao Z; Yan T
    Phys Chem Chem Phys; 2020 Nov; 22(44):25747-25759. PubMed ID: 33146653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of nanoconfined glycerol.
    Busselez R; Lefort R; Ji Q; Affouard F; Morineau D
    Phys Chem Chem Phys; 2009 Dec; 11(47):11127-33. PubMed ID: 20024381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study.
    Long Z; Tuckerman ME
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):2792-2804. PubMed ID: 36968146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.