BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38649511)

  • 1. Oligomerization states of the Mycobacterium tuberculosis RNA polymerase core and holoenzymes.
    Francis SM; Pattar Kadavan S; Natesh R
    Arch Microbiol; 2024 Apr; 206(5):230. PubMed ID: 38649511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of ω with the C-Terminal Region of the β' Subunit Is Essential for Assembly of RNA Polymerase in Mycobacterium tuberculosis.
    Mao C; Zhu Y; Lu P; Feng L; Chen S; Hu Y
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29632095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for transcription initiation by bacterial ECF σ factors.
    Li L; Fang C; Zhuang N; Wang T; Zhang Y
    Nat Commun; 2019 Mar; 10(1):1153. PubMed ID: 30858373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization.
    Morichaud Z; Trapani S; Vishwakarma RK; Chaloin L; Lionne C; Lai-Kee-Him J; Bron P; Brodolin K
    Nat Commun; 2023 Jan; 14(1):484. PubMed ID: 36717560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ A-containing RNA polymerase holoenzyme.
    Hu Y; Morichaud Z; Chen S; Leonetti JP; Brodolin K
    Nucleic Acids Res; 2012 Aug; 40(14):6547-57. PubMed ID: 22570422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of Bacillus subtilis sigmaA with RNA polymerase.
    Johnston EB; Lewis PJ; Griffith R
    Protein Sci; 2009 Nov; 18(11):2287-97. PubMed ID: 19735077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding.
    Hu Y; Morichaud Z; Perumal AS; Roquet-Baneres F; Brodolin K
    Nucleic Acids Res; 2014; 42(16):10399-408. PubMed ID: 25122744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets.
    Prusa J; Jensen D; Santiago-Collazo G; Pope SS; Garner AL; Miller JJ; Ruiz Manzano A; Galburt EA; Stallings CL
    J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29686140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
    Nickels BE; Garrity SJ; Mekler V; Minakhin L; Severinov K; Ebright RH; Hochschild A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4488-93. PubMed ID: 15761057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterization of a highly pure RNA polymerase holoenzyme from Mycobacterium tuberculosis.
    Herrera-Asmat O; Lubkowska L; Kashlev M; Bustamante CJ; Guerra DG; Kireeva ML
    Protein Expr Purif; 2017 Jun; 134():1-10. PubMed ID: 28323168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for activating bacterial RNA polymerase.
    Ghosh T; Bose D; Zhang X
    FEMS Microbiol Rev; 2010 Sep; 34(5):611-27. PubMed ID: 20629756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification.
    Banerjee R; Rudra P; Prajapati RK; Sengupta S; Mukhopadhyay J
    Tuberculosis (Edinb); 2014 Jul; 94(4):397-404. PubMed ID: 24832563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN).
    Wigneshweraraj SR; Casaz P; Buck M
    Nucleic Acids Res; 2002 Feb; 30(4):1016-28. PubMed ID: 11842114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal domain of M. tuberculosis ECF sigma factor I (SigI) interferes in SigI-RNAP interaction.
    Mallick Gupta A; Mandal S
    J Mol Model; 2020 Mar; 26(4):77. PubMed ID: 32180013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition.
    Kuznedelov K; Minakhin L; Niedziela-Majka A; Dove SL; Rogulja D; Nickels BE; Hochschild A; Heyduk T; Severinov K
    Science; 2002 Feb; 295(5556):855-7. PubMed ID: 11823642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of domain 1.1 of the σ
    Zachrdla M; Padrta P; Rabatinová A; Šanderová H; Barvík I; Krásný L; Žídek L
    J Biol Chem; 2017 Jul; 292(28):11610-11617. PubMed ID: 28539362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme.
    Murakami KS
    J Biol Chem; 2013 Mar; 288(13):9126-34. PubMed ID: 23389035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Escherichia coli RNA polymerase σ70 subunit with promoter elements in the context of free σ70, RNA polymerase holoenzyme, and the β'-σ70 complex.
    Mekler V; Pavlova O; Severinov K
    J Biol Chem; 2011 Jan; 286(1):270-9. PubMed ID: 20952386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for transcription activation by Crl through tethering of σ
    Cartagena AJ; Banta AB; Sathyan N; Ross W; Gourse RL; Campbell EA; Darst SA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18923-18927. PubMed ID: 31484766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biophysical studies on two promoter recognition domains of the extra-cytoplasmic function sigma factor sigma(C) from Mycobacterium tuberculosis.
    Thakur KG; Joshi AM; Gopal B
    J Biol Chem; 2007 Feb; 282(7):4711-4718. PubMed ID: 17145760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.