These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38649578)

  • 1. Using Infrared Thermography for High-Throughput Plant Phenotyping.
    Fan M; Stamford J; Lawson T
    Methods Mol Biol; 2024; 2790():317-332. PubMed ID: 38649578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Drought Responses Using Thermal Infrared Imaging.
    Prashar A; Jones HG
    Methods Mol Biol; 2016; 1398():209-19. PubMed ID: 26867626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of light-induced stomatal response in Arabidopsis using thermal imaging.
    Orzechowska A; Trtílek M; Tokarz K; Rozpądek P
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1129-1134. PubMed ID: 33046242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared thermography in plant phenotyping for salinity tolerance.
    James RA; Sirault XR
    Methods Mol Biol; 2012; 913():173-89. PubMed ID: 22895759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermography methods to assess stomatal behaviour in a dynamic environment.
    Vialet-Chabrand S; Lawson T
    J Exp Bot; 2020 Apr; 71(7):2329-2338. PubMed ID: 31912133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Analysis of Stomatal Response under Salinity and High Light.
    Orzechowska A; Trtílek M; Tokarz KM; Szymańska R; Niewiadomska E; Rozpądek P; Wątor K
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple system for phenotyping of plant transpiration and stomatal conductance response to drought.
    Driever SM; Mossink L; Ocaña DN; Kaiser E
    Plant Sci; 2023 Apr; 329():111626. PubMed ID: 36738936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infra-red thermography for high throughput field phenotyping in Solanum tuberosum.
    Prashar A; Yildiz J; McNicol JW; Bryan GJ; Jones HG
    PLoS One; 2013; 8(6):e65816. PubMed ID: 23762433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal heterogeneity in responses to humidity and temperature: Testing a mechanistic model.
    Sweet KJ; Peak D; Mott KA
    Plant Cell Environ; 2017 Nov; 40(11):2771-2779. PubMed ID: 28777880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment.
    Vialet-Chabrand S; Lawson T
    J Exp Bot; 2019 May; 70(10):2839-2855. PubMed ID: 30793211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of imaging techniques for plant phenotyping.
    Li L; Zhang Q; Huang D
    Sensors (Basel); 2014 Oct; 14(11):20078-111. PubMed ID: 25347588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform.
    Mertens S; Verbraeken L; Sprenger H; De Meyer S; Demuynck K; Cannoot B; Merchie J; De Block J; Vogel JT; Bruce W; Nelissen H; Maere S; Inzé D; Wuyts N
    Plant Methods; 2023 Nov; 19(1):132. PubMed ID: 37996870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine.
    Jones HG; Stoll M; Santos T; de Sousa C; Chaves MM; Grant OM
    J Exp Bot; 2002 Nov; 53(378):2249-60. PubMed ID: 12379792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems.
    Craparo ACW; Steppe K; Van Asten PJA; Läderach P; Jassogne LTP; Grab SW
    Sci Total Environ; 2017 Dec; 609():755-763. PubMed ID: 28763672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation.
    Merlot S; Mustilli AC; Genty B; North H; Lefebvre V; Sotta B; Vavasseur A; Giraudat J
    Plant J; 2002 Jun; 30(5):601-9. PubMed ID: 12047634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein.
    Kusumi K; Hirotsuka S; Kumamaru T; Iba K
    J Exp Bot; 2012 Sep; 63(15):5635-44. PubMed ID: 22915747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of the dynamic response of cucumber leaves to fusaric acid using thermal imaging.
    Wang M; Xiong Y; Ling N; Feng X; Zhong Z; Shen Q; Guo S
    Plant Physiol Biochem; 2013 May; 66():68-76. PubMed ID: 23474432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal imaging as a noninvasive technique for analyzing circadian rhythms in plants.
    Dakhiya Y; Green RM
    New Phytol; 2019 Dec; 224(4):1685-1696. PubMed ID: 31411748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species.
    Marchin RM; Backes D; Ossola A; Leishman MR; Tjoelker MG; Ellsworth DS
    Glob Chang Biol; 2022 Feb; 28(3):1133-1146. PubMed ID: 34741566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.