BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38649620)

  • 1. Performance of water indices for large-scale water resources monitoring using Sentinel-2 data in Ethiopia.
    Tesfaye M; Breuer L
    Environ Monit Assess; 2024 Apr; 196(5):467. PubMed ID: 38649620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate extraction of surface water in complex environment based on Google Earth Engine and Sentinel-2.
    Li J; Peng B; Wei Y; Ye H
    PLoS One; 2021; 16(6):e0253209. PubMed ID: 34143822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving on mapping long-term surface water with a novel framework based on the Landsat imagery series.
    Lan L; Wang YG; Chen HS; Gao XR; Wang XK; Yan XF
    J Environ Manage; 2024 Feb; 353():120202. PubMed ID: 38308984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iranian wetland inventory map at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform.
    Hemati M; Hasanlou M; Mahdianpari M; Mohammadimanesh F
    Environ Monit Assess; 2023 Apr; 195(5):558. PubMed ID: 37046022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: a case study over the Andika and Behbahan Regions, Iran.
    Farhadi H; Mokhtarzade M; Ebadi H; Beirami BA
    Environ Monit Assess; 2022 Apr; 194(5):369. PubMed ID: 35430649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand.
    Nguyen UNT; Pham LTH; Dang TD
    Environ Monit Assess; 2019 Mar; 191(4):235. PubMed ID: 30900016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical quantification of current status quo and future prediction of water quality in eight Asian megacities: challenges and opportunities for sustainable water management.
    Kumar P
    Environ Monit Assess; 2019 May; 191(6):319. PubMed ID: 31044285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine.
    Pech-May F; Aquino-Santos R; Rios-Toledo G; Posadas-Durán JPF
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis and discussion of seasonal dynamics of indices of chemical composition of water from some reservoirs of Uzbekistan].
    Almatov BI; Nuraliev NA; Nuralieva KO
    Gig Sanit; 2017; 96(2):148-52. PubMed ID: 29446600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of landscape pattern changes and environmental indices on land surface temperature in a fragile ecosystem in southeastern Iran.
    Saleh SK; Sanaei A; Amoushahi S; Ranjbar S
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):34037-34053. PubMed ID: 36508091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the linkages between spatio-temporal urban land system changes and land surface temperature in Srinagar City, India, using image archives from Google Earth Engine.
    Murtaza KO; Shafai S; Shahid P; Romshoo SA
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):107281-107295. PubMed ID: 37495805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping vegetation species succession in a mountainous grassland ecosystem using Landsat, ASTER MI, and Sentinel-2 data.
    Adagbasa EG; Mukwada G
    PLoS One; 2022; 17(1):e0256672. PubMed ID: 35081107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a HEC-HMS-based watershed modeling system for identification, allocation, and optimization of reservoirs in a river basin.
    Srinivas R; Singh AP; Deshmukh A
    Environ Monit Assess; 2017 Dec; 190(1):31. PubMed ID: 29260336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways to water sustainability? A global study assessing the benefits of integrated water resources management.
    Bilalova S; Newig J; Tremblay-Lévesque LC; Roux J; Herron C; Crane S
    J Environ Manage; 2023 Oct; 343():118179. PubMed ID: 37257233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes.
    Mcgregor GB; Marshall JC; Lobegeiger JS; Holloway D; Menke N; Coysh J
    Environ Manage; 2018 Mar; 61(3):358-374. PubMed ID: 28349191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Spatial and Temporal Distribution Characteristics of Coordinated Development Degree among Regional Water Resources, Social Economy, and Ecological Environment Systems.
    Wang X; Dong Z; Xu W; Luo Y; Zhou T; Wang W
    Int J Environ Res Public Health; 2019 Oct; 16(21):. PubMed ID: 31671669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal change analysis of long time series inland water in Sri Lanka based on remote sensing cloud computing.
    Li J; Wang J; Yang L; Ye H
    Sci Rep; 2022 Jan; 12(1):766. PubMed ID: 35031650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the supply for a basic urban service demand-with a focus on water-energy management in Addis Ababa city.
    Kitessa BD; Ayalew SM; Gebrie GS; Teferi ST
    PLoS One; 2021; 16(9):e0249643. PubMed ID: 34492028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent of temporary water bodies increased in the drylands of northern China: a multiscale analysis based on MODIS data.
    Gou S; Liu Z; He C; Li J
    Environ Monit Assess; 2018 Apr; 190(5):296. PubMed ID: 29675751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020.
    Zhang Y; Du J; Guo L; Fang S; Zhang J; Sun B; Mao J; Sheng Z; Li L
    Sci Total Environ; 2022 Nov; 845():157152. PubMed ID: 35803420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.