BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 38649653)

  • 1. The Impact of Non-bone Metastatic Cancer on Musculoskeletal Health.
    Galiana-Melendez F; Huot JR
    Curr Osteoporos Rep; 2024 Jun; 22(3):318-329. PubMed ID: 38649653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of myokines and osteokines in cancer cachexia.
    Pin F; Bonewald LF; Bonetto A
    Exp Biol Med (Maywood); 2021 Oct; 246(19):2118-2127. PubMed ID: 33899538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions.
    Siddiqui JA; Pothuraju R; Jain M; Batra SK; Nasser MW
    Biochim Biophys Acta Rev Cancer; 2020 Apr; 1873(2):188359. PubMed ID: 32222610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.
    Bonetto A; Aydogdu T; Jin X; Zhang Z; Zhan R; Puzis L; Koniaris LG; Zimmers TA
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E410-21. PubMed ID: 22669242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia.
    Lan XQ; Deng CJ; Wang QQ; Zhao LM; Jiao BW; Xiang Y
    Gen Comp Endocrinol; 2024 Jul; 353():114513. PubMed ID: 38604437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation.
    Daou HN
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R296-R310. PubMed ID: 31823669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia.
    Ojima C; Noguchi Y; Miyamoto T; Saito Y; Orihashi H; Yoshimatsu Y; Watabe T; Takayama K; Hayashi Y; Itoh F
    Cancer Sci; 2020 Aug; 111(8):2954-2964. PubMed ID: 32519375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.
    Vitorino R; Moreira-Gonçalves D; Ferreira R
    Curr Opin Clin Nutr Metab Care; 2015 May; 18(3):226-33. PubMed ID: 25783794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cucurbitacin IIb attenuates cancer cachexia induced skeletal muscle atrophy by regulating the IL-6/STAT3/FoxO signaling pathway.
    Wang Y; Sun X; Yang Q; Guo C
    Phytother Res; 2023 Aug; 37(8):3380-3393. PubMed ID: 37073890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells.
    Bhatia V; Cao Y; Ko TC; Falzon M
    Pancreas; 2016; 45(5):659-70. PubMed ID: 26495794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting.
    Dave S; Patel BM
    Fundam Clin Pharmacol; 2023 Dec; 37(6):1079-1091. PubMed ID: 37474262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone-Muscle Mutual Interactions.
    Lara-Castillo N; Johnson ML
    Curr Osteoporos Rep; 2020 Aug; 18(4):408-421. PubMed ID: 32519283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications.
    Yan Y; Wang L; Ge L; Pathak JL
    Curr Osteoporos Rep; 2020 Feb; 18(1):67-80. PubMed ID: 31953640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting.
    Shum AM; Mahendradatta T; Taylor RJ; Painter AB; Moore MM; Tsoli M; Tan TC; Clarke SJ; Robertson GR; Polly P
    Aging (Albany NY); 2012 Feb; 4(2):133-43. PubMed ID: 22361433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells.
    Susperregui AR; Viñals F; Ho PW; Gillespie MT; Martin TJ; Ventura F
    J Cell Physiol; 2008 Jul; 216(1):144-52. PubMed ID: 18247361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management.
    Siff T; Parajuli P; Razzaque MS; Atfi A
    Trends Endocrinol Metab; 2021 Jun; 32(6):382-402. PubMed ID: 33888422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin 6 as a key regulator of muscle mass during cachexia.
    Carson JA; Baltgalvis KA
    Exerc Sport Sci Rev; 2010 Oct; 38(4):168-76. PubMed ID: 20871233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TGF-β/KLF10 signaling axis regulates atrophy-associated genes to induce muscle wasting in pancreatic cancer.
    Dasgupta A; Gibbard DF; Schmitt RE; Arneson-Wissink PC; Ducharme AM; Bruinsma ES; Hawse JR; Jatoi A; Doles JD
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2215095120. PubMed ID: 37585460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Cachexia: More Than Skeletal Muscle Wasting.
    Schmidt SF; Rohm M; Herzig S; Berriel Diaz M
    Trends Cancer; 2018 Dec; 4(12):849-860. PubMed ID: 30470306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TGF-β pathway associated with cancer cachexia.
    Guttridge DC
    Nat Med; 2015 Nov; 21(11):1248-9. PubMed ID: 26540384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.