These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38649691)

  • 1. Single-unit data for sensory neuroscience: Responses from the auditory nerve of young-adult and aging gerbils.
    Heeringa AN
    Sci Data; 2024 Apr; 11(1):411. PubMed ID: 38649691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils.
    Heeringa AN; Zhang L; Ashida G; Beutelmann R; Steenken F; Köppl C
    J Neurosci; 2020 Jan; 40(2):343-354. PubMed ID: 31719164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear aging disrupts the correlation between spontaneous rate- and sound-level coding in auditory nerve fibers.
    Heeringa AN; Teske F; Ashida G; Köppl C
    J Neurophysiol; 2023 Sep; 130(3):736-750. PubMed ID: 37584075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered neural encoding of vowels in noise does not affect behavioral vowel discrimination in gerbils with age-related hearing loss.
    Heeringa AN; Jüchter C; Beutelmann R; Klump GM; Köppl C
    Front Neurosci; 2023; 17():1238941. PubMed ID: 38033551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural processing and perception of Schroeder-phase harmonic tone complexes in the gerbil: Relating single-unit neurophysiology to behavior.
    Steenken F; Oetjen H; Beutelmann R; Carney LH; Koeppl C; Klump GM
    Eur J Neurosci; 2022 Aug; 56(3):4060-4085. PubMed ID: 35724973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Envelope following responses predict speech-in-noise performance in normal-hearing listeners.
    Mepani AM; Verhulst S; Hancock KE; Garrett M; Vasilkov V; Bennett K; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2021 Apr; 125(4):1213-1222. PubMed ID: 33656936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate/level functions of auditory-nerve fibers in young and quiet-aged gerbils.
    Hellstrom LI; Schmiedt RA
    Hear Res; 1991 Jun; 53(2):217-22. PubMed ID: 1880076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory nerve fibers in young and quiet-aged gerbils: morphometric correlations with endocochlear potential.
    Suryadevara AC; Schulte BA; Schmiedt RA; Slepecky NB
    Hear Res; 2001 Nov; 161(1-2):45-53. PubMed ID: 11744280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related loss of activity of auditory-nerve fibers.
    Schmiedt RA; Mills JH; Boettcher FA
    J Neurophysiol; 1996 Oct; 76(4):2799-803. PubMed ID: 8899648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of omni-directional noise-exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus) -- a behavioral approach.
    Maier JK; Kindermann T; Grothe B; Klump GM
    Brain Res; 2008 Jul; 1220():47-57. PubMed ID: 18343357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils.
    Wrobel C; Dieter A; Huet A; Keppeler D; Duque-Afonso CJ; Vogl C; Hoch G; Jeschke M; Moser T
    Sci Transl Med; 2018 Jul; 10(449):. PubMed ID: 29997248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil.
    Ohlemiller KK; Echteler SM
    J Comp Physiol A; 1990 Aug; 167(3):329-38. PubMed ID: 2231475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in auditory evoked potentials of gerbils. I. Response amplitudes.
    Boettcher FA; Mills JH; Norton BL
    Hear Res; 1993 Dec; 71(1-2):137-45. PubMed ID: 8113132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An estimate of the auditory-filter bandwidth in the Mongolian gerbil.
    Kittel M; Wagner E; Klump GM
    Hear Res; 2002 Feb; 164(1-2):69-76. PubMed ID: 11950526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound coding in the auditory nerve of gerbils.
    Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J
    Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral measures of vowel sensitivity in Mongolian gerbils (Meriones unguiculatus): effects of age and genetic origin.
    Sinnott JM; Street SL; Mosteller KW; Williamson TL
    Hear Res; 1997 Oct; 112(1-2):235-46. PubMed ID: 9367244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.