BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38649743)

  • 1. Simplifying deep learning to enhance accessibility of large-scale 3D brain imaging analysis.
    Nat Methods; 2024 Apr; ():. PubMed ID: 38649743
    [No Abstract]   [Full Text] [Related]  

  • 2. Pushing the limits of low-cost ultra-low-field MRI by dual-acquisition deep learning 3D superresolution.
    Lau V; Xiao L; Zhao Y; Su S; Ding Y; Man C; Wang X; Tsang A; Cao P; Lau GKK; Leung GKK; Leong ATL; Wu EX
    Magn Reson Med; 2023 Aug; 90(2):400-416. PubMed ID: 37010491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
    Chen Y; Fang Z; Hung SC; Chang WT; Shen D; Lin W
    Neuroimage; 2020 Feb; 206():116329. PubMed ID: 31689536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction.
    Shen L; Zhao W; Capaldi D; Pauly J; Xing L
    Comput Biol Med; 2022 Sep; 148():105710. PubMed ID: 35715260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI.
    Bengs M; Behrendt F; Krüger J; Opfer R; Schlaefer A
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1413-1423. PubMed ID: 34251654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for 3D imaging and image analysis in biomineralization research.
    Reznikov N; Buss DJ; Provencher B; McKee MD; Piché N
    J Struct Biol; 2020 Oct; 212(1):107598. PubMed ID: 32783967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient memory reserving-and-fading strategy for vector quantization based 3D brain segmentation and tumor extraction using an unsupervised deep learning network.
    De A; Wang X; Zhang Q; Wu J; Cong F
    Cogn Neurodyn; 2023 Apr; 18(3):1-22. PubMed ID: 37362765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust performance of deep learning for automatic detection and segmentation of brain metastases using three-dimensional black-blood and three-dimensional gradient echo imaging.
    Park YW; Jun Y; Lee Y; Han K; An C; Ahn SS; Hwang D; Lee SK
    Eur Radiol; 2021 Sep; 31(9):6686-6695. PubMed ID: 33738598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens.
    Zhao F; Zhu L; Fang C; Yu T; Zhu D; Fei P
    Biomed Opt Express; 2020 Dec; 11(12):7273-7285. PubMed ID: 33408995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learned 3D black-blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors.
    Jun Y; Eo T; Kim T; Shin H; Hwang D; Bae SH; Park YW; Lee HJ; Choi BW; Ahn SS
    Sci Rep; 2018 Jun; 8(1):9450. PubMed ID: 29930257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning enabled fast 3D brain MRI at 0.055 tesla.
    Man C; Lau V; Su S; Zhao Y; Xiao L; Ding Y; Leung GKK; Leong ATL; Wu EX
    Sci Adv; 2023 Sep; 9(38):eadi9327. PubMed ID: 37738341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing deep learning via the 3D U-net neural network for the delineation of brain stroke lesions in MRI image.
    Soleimani P; Farezi N
    Sci Rep; 2023 Nov; 13(1):19808. PubMed ID: 37957203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting deep learning models for glioma survival classification using visualization and textual explanations.
    Osadebey M; Liu Q; Fuster-Garcia E; Emblem KE
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):225. PubMed ID: 37853371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Detection, Segmentation, and Metrology of High Bandwidth Memory 3D Scans Using an Improved Semi-Supervised Deep Learning Approach.
    Wang J; Chang R; Zhao Z; Pahwa RS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking.
    Bruch R; Keller F; Böhland M; Vitacolonna M; Klinger L; Rudolf R; Reischl M
    PLoS One; 2023; 18(3):e0283828. PubMed ID: 37000778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers.
    Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A
    Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Ultrasonic Brain Imaging with Deep Learning Based on Fully Convolutional Networks.
    Ren J; Wang X; Liu C; Sun H; Tong J; Lin M; Li J; Liang L; Yin F; Xie M; Liu Y
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.