BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38650237)

  • 1. Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel.
    Chang D; Wang C; Ndayisenga F; Yu Z
    Bioresour Bioprocess; 2021 Oct; 8(1):105. PubMed ID: 38650237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced bioethanol production by evolved Escherichia coli LGE2-H in a microbial electrolysis cell system.
    Wang C; Chang D; Zhang Q; Yu Z
    Bioresour Bioprocess; 2024 Jan; 11(1):4. PubMed ID: 38647898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitor tolerance and bioethanol fermentability of levoglucosan-utilizing
    Chang D; Islam ZU; Zheng J; Zhao J; Cui X; Yu Z
    Synth Syst Biotechnol; 2021 Dec; 6(4):384-395. PubMed ID: 34853817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omics analysis coupled with gene editing revealed potential transporters and regulators related to levoglucosan metabolism efficiency of the engineered Escherichia coli.
    Chang D; Wang C; Ul Islam Z; Yu Z
    Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):2. PubMed ID: 35418138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.
    Islam ZU; Zhisheng Y; Hassan el B; Dongdong C; Hongxun Z
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1557-79. PubMed ID: 26433384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering ethanologenic Escherichia coli for levoglucosan utilization.
    Layton DS; Ajjarapu A; Choi DW; Jarboe LR
    Bioresour Technol; 2011 Sep; 102(17):8318-22. PubMed ID: 21719279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.
    Luque L; Westerhof R; Van Rossum G; Oudenhoven S; Kersten S; Berruti F; Rehmann L
    Bioresour Technol; 2014 Jun; 161():20-8. PubMed ID: 24681340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis.
    Wang J; You S; Lu Z; Chen R; Xu F
    Bioresour Technol; 2020 Jul; 307():123179. PubMed ID: 32222688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution.
    Wang X; Khushk I; Xiao Y; Gao Q; Bao J
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):377-388. PubMed ID: 29151160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC.
    Eng T; Demling P; Herbert RA; Chen Y; Benites V; Martin J; Lipzen A; Baidoo EEK; Blank LM; Petzold CJ; Mukhopadhyay A
    Microb Cell Fact; 2018 Oct; 17(1):159. PubMed ID: 30296937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of levoglucosan and cellobiosan by
    Linger JG; Hobdey SE; Franden MA; Fulk EM; Beckham GT
    Metab Eng Commun; 2016 Dec; 3():24-29. PubMed ID: 29468111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction and hydrolysis of levoglucosan from pyrolysis oil.
    Bennett NM; Helle SS; Duff SJ
    Bioresour Technol; 2009 Dec; 100(23):6059-63. PubMed ID: 19616934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for mitigation of bio-oil extract toxicity.
    Chan JK; Duff SJ
    Bioresour Technol; 2010 May; 101(10):3755-9. PubMed ID: 20106661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.
    Yang Z; Bai Z; Sun H; Yu Z; Li X; Guo Y; Zhang H
    Microb Cell Fact; 2014 Dec; 13():182. PubMed ID: 25551193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold plasma pretreatment reinforces the lignocellulose-derived aldehyde inhibitors tolerance and bioethanol fermentability for Zymomonas mobilis.
    Yi X; Yang D; Xu X; Wang Y; Guo Y; Zhang M; Wang Y; He Y; Zhu J
    Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):102. PubMed ID: 37322470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.
    Sukhbaatar B; Li Q; Wan C; Yu F; Hassan el-B; Steele P
    Bioresour Technol; 2014 Jun; 161():379-84. PubMed ID: 24727698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain.
    Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J
    World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.