BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38650245)

  • 1. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production.
    Yi YC; Ng IS
    Bioresour Bioprocess; 2021 Feb; 8(1):13. PubMed ID: 38650245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid.
    Wu J; Wu J; He RL; Hu L; Liu DF; Li WW
    Metab Eng; 2024 May; 83():206-215. PubMed ID: 38710300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-Tuning of
    Su T; Guo Q; Zheng Y; Liang Q; Wang Q; Qi Q
    Front Microbiol; 2019; 10():1731. PubMed ID: 31417522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular control of multiple pathways of Corynebacterium glutamicum for 5-aminolevulinic acid production.
    Ge F; Li X; Ge Q; Zhu D; Li W; Shi F; Chen H
    AMB Express; 2021 Dec; 11(1):179. PubMed ID: 34958433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review.
    Yi YC; Shih IT; Yu TH; Lee YJ; Ng IS
    Bioresour Bioprocess; 2021 Oct; 8(1):100. PubMed ID: 38650260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.
    Brennan CM; Mazzucca NQ; Mezoian T; Hunt TM; Keane ML; Leonard JN; Scola SE; Beer EN; Perdue S; Pellock BJ
    PLoS One; 2014; 9(10):e109879. PubMed ID: 25356668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli.
    Shih IT; Yi YC; Ng IS
    Appl Biochem Biotechnol; 2021 Sep; 193(9):2858-2871. PubMed ID: 33860878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux-Balance Analysis and Mobile CRISPRi-Guided Deletion of a Conditionally Essential Gene in
    Ford KC; Kaste JAM; Shachar-Hill Y; TerAvest MA
    ACS Synth Biol; 2022 Oct; 11(10):3405-3413. PubMed ID: 36219726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Shewanella oneidensis to produce glutamate and itaconic acid.
    Wohlers H; Zentgraf L; van der Sande L; Holtmann D
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):36. PubMed ID: 38183472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli BW25113 for the production of 5-Aminolevulinic Acid based on CRISPR/Cas9 mediated gene knockout and metabolic pathway modification.
    Ye C; Yang Y; Chen X; Yang L; Hua X; Yang M; Zeng X; Qiao S
    J Biol Eng; 2022 Oct; 16(1):26. PubMed ID: 36229878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli.
    Yu TH; Yi YC; Shih IT; Ng IS
    Appl Biochem Biotechnol; 2020 May; 191(1):299-312. PubMed ID: 31845195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in
    Ding Q; Liu Q; Zhang Y; Li F; Song H
    ACS Synth Biol; 2023 Feb; 12(2):471-481. PubMed ID: 36457250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.