These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38650376)

  • 1. Discovery of Alloy Catalysts Beyond Pd for Selective Hydrogenation of Reformate via First-Principle Screening with Consideration of H-Coverage.
    Wang J; Xu H; Zhang Y; Wu J; Ma H; Zhan X; Zhu J; Cheng D
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202317592. PubMed ID: 38650376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Going Beyond Silver in Ethylene Epoxidation with First-Principles Catalyst Screening.
    Huš M; Grilc M; Teržan J; Gyergyek S; Likozar B; Hellman A
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305804. PubMed ID: 37226934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambient hydrogenation of solid aromatics enabled by a high entropy alloy nanocatalyst.
    Jing Z; Guo Y; Wang Q; Yan X; Yue G; Li Z; Liu H; Qin R; Zhong C; Li M; Xu D; Yao Y; Yao Y; Shuai M
    Nat Commun; 2024 Jul; 15(1):5806. PubMed ID: 38987569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls.
    Wang T; Sha J; Sabbe M; Sautet P; Pera-Titus M; Michel C
    Nat Commun; 2021 Aug; 12(1):5100. PubMed ID: 34429417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Efficient Single-Atom Alloy Catalysts for Selective C═O Hydrogenation: A First-Principles, Active Learning and Microkinetic Study.
    Feng H; Zhang M; Ge Z; Deng Y; Pu P; Zhou W; Yuan H; Yang J; Li F; Zhang X; Zhang YW
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55903-55915. PubMed ID: 37996252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of earth-abundant materials for selective dehydrogenation of light alkanes to olefins.
    Wang T; Li G; Cui X; Abild-Pedersen F
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress and prospective of heterogeneous catalysts for H
    Ingle AA; Ansari SZ; Shende DZ; Wasewar KL; Pandit AB
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86468-86484. PubMed ID: 35710969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy Used to Control the Mechanism of Homogeneous Alkyne/Olefin Hydrogenation: AIMD Simulations and DFT Calculations.
    Luo Y; Huang Z; Chen Z; Xu Z; Meng J; Li HY; Meng Q; Tang D
    J Org Chem; 2020 Sep; 85(18):11626-11634. PubMed ID: 32835476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole.
    Cheng M; Zhang X; Guo Z; Lv P; Xiong R; Wang Z; Zhou Z; Zhang M
    J Colloid Interface Sci; 2021 Nov; 602():459-468. PubMed ID: 34144303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation by O
    Golio N; Gellman AJ
    ACS Catal; 2023 Nov; 13(22):14548-14561. PubMed ID: 38026815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of PdPt alloys for preferential C
    Ma H; Wang J; Zhan X; Xie Y; Sun L; Hu X; Xu H; Cheng D
    Chem Commun (Camb); 2023 May; 59(43):6529-6532. PubMed ID: 37158790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C
    Zhang R; Zhao B; He L; Wang A; Wang B
    Phys Chem Chem Phys; 2018 Jun; 20(25):17487-17496. PubMed ID: 29911703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56151-56163. PubMed ID: 34787997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives.
    Cao X; Jang BW; Hu J; Wang L; Zhang S
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Study of Pd-Ni Bimetallic Catalysts Supported on UiO-66 and UiO-66-NH
    Liu L; Yu L; Zhou X; Xin C; Sun S; Liu Z; Zhang J; Liu Y; Tai X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media.
    McClure JP; Boltersdorf J; Baker DR; Farinha TG; Dzuricky N; Villegas CEP; Rocha AR; Leite MS
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24919-24932. PubMed ID: 31044596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO
    Müller A; Comas-Vives A; Copéret C
    Chem Sci; 2022 Nov; 13(45):13442-13458. PubMed ID: 36507169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium-Picolylamine-Incorporated Mixed-Linker MOFs: Highly Active Heterogeneous Catalysts for Olefin and Aldehyde Hydrogenation.
    Almeida LD; Anbari WH; Gong X; Poloneeva D; Meijerink M; Cerillo JL; Garzon-Tovar L; Gascon J
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38079363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.