These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38650871)

  • 1. From predator to protector:
    Han J; Dong Z; Ji W; Lv W; Luo M; Fu B
    Front Microbiol; 2024; 15():1378288. PubMed ID: 38650871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against
    Sabri M; El Handi K; Valentini F; De Stradis A; Achbani EH; Benkirane R; Resch G; Elbeaino T
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36366553
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation and characterization of
    Cui Z; Hu L; Zeng L; Meng W; Guo D; Sun L
    Front Microbiol; 2023; 14():1099664. PubMed ID: 36970697
    [No Abstract]   [Full Text] [Related]  

  • 4. First European
    Biosca EG; Delgado Santander R; Morán F; Figàs-Segura À; Vázquez R; Català-Senent JF; Álvarez B
    Biology (Basel); 2024 Mar; 13(3):. PubMed ID: 38534446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Bacteriophages Y2::
    Born Y; Fieseler L; Thöny V; Leimer N; Duffy B; Loessner MJ
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389547
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen
    Patel RR; Sundin GW; Yang CH; Wang J; Huntley RB; Yuan X; Zeng Q
    Front Microbiol; 2017; 8():687. PubMed ID: 28469617
    [No Abstract]   [Full Text] [Related]  

  • 7. Screening for Novel Beneficial Environmental Bacteria for an Antagonism-Based
    Esteban-Herrero G; Álvarez B; Santander RD; Biosca EG
    Microorganisms; 2023 Jul; 11(7):. PubMed ID: 37512967
    [No Abstract]   [Full Text] [Related]  

  • 8. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora.
    Paternoster T; Défago G; Duffy B; Gessler C; Pertot I
    Int Microbiol; 2010 Dec; 13(4):195-206. PubMed ID: 21404214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Biocontrol Potential of the Natural Microbiota of the Apple Blossom.
    Schnyder A; Eberl L; Agnoli K
    Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557734
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploring Antimicrobial Peptides Efficacy against Fire Blight (
    Sabri M; El Handi K; Valentini F; De Stradis A; Achbani EH; Benkirane R; Elbeaino T
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erwinia amylovora Auxotrophic Mutant Exometabolomics and Virulence on Apples.
    Klee SM; Sinn JP; Finley M; Allman EL; Smith PB; Aimufua O; Sitther V; Lehman BL; Krawczyk T; Peter KA; McNellis TW
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy.
    Ramos LS; Sinn JP; Lehman BL; Pfeufer EE; Peter KA; McNellis TW
    Lett Appl Microbiol; 2015 Jun; 60(6):572-9. PubMed ID: 25789570
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Dong H; Xu X; Gao R; Li Y; Li A; Yao Q; Zhu H
    Front Microbiol; 2021; 12():801091. PubMed ID: 35197943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora.
    McGhee GC; Sundin GW
    Phytopathology; 2011 Feb; 101(2):192-204. PubMed ID: 20923369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bee Vectoring: Development of the Japanese Orchard Bee as a Targeted Delivery System of Biological Control Agents for Fire Blight Management.
    Joshi NK; Ngugi HK; Biddinger DJ
    Pathogens; 2020 Jan; 9(1):. PubMed ID: 31947931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire blight resistance, irrigation and conducive wet weather improve
    Santander RD; Khodadadi F; Meredith CL; Rađenović Ž; Clements J; Aćimović SG
    Front Microbiol; 2022; 13():1009364. PubMed ID: 36329850
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of the biocontrol activity of three bacterial isolates against the phytopathogen Erwinia amylovora.
    Dagher F; Nickzad A; Zheng J; Hoffmann M; Déziel E
    Microbiologyopen; 2021 Jun; 10(3):e1202. PubMed ID: 34180603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocontrol mechanism of Myxococcus fulvus B25-I-3 against Phytophthora infestans and its control efficiency on potato late blight.
    Wu ZH; Ma Q; Sun ZN; Cui HC; Liu HR
    Folia Microbiol (Praha); 2021 Aug; 66(4):555-567. PubMed ID: 33788146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refinement of Nonantibiotic Spray Programs for Fire Blight Control in Organic Pome Fruit.
    Johnson KB; Temple TN; Kc A; Elkins RB
    Plant Dis; 2022 Feb; 106(2):623-633. PubMed ID: 34633232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Control Potential of Penicillium brasilianum against Fire Blight Disease.
    Kim YS; Ngo MT; Kim B; Han JW; Song J; Park MS; Choi GJ; Kim H
    Plant Pathol J; 2022 Oct; 38(5):461-471. PubMed ID: 36221918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.