These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38651197)
1. A dual strategy of Na Geng L; Wu L; Tan H; Wang M; Liu Z; Mou L; Shang Y; Yan D; Peng S Nanoscale; 2024 May; 16(19):9488-9495. PubMed ID: 38651197 [TBL] [Abstract][Full Text] [Related]
2. P2-Type Na0.67Ni0.23Mg0.1Mn0.67O2 as a High-Performance Cathode for a Sodium-Ion Battery. Hou H; Gan B; Gong Y; Chen N; Sun C Inorg Chem; 2016 Sep; 55(17):9033-7. PubMed ID: 27513524 [TBL] [Abstract][Full Text] [Related]
3. Ca/Li Synergetic-Doped Na Xiao K; Zhao B; Bai J; Mao Y; Wang P; Wang S; Zhu X; Sun Y Chemistry; 2024 Dec; 30(69):e202402313. PubMed ID: 39320970 [TBL] [Abstract][Full Text] [Related]
4. Promoting threshold voltage of P2-Na Peng X; Zhang H; Yang C; Lui Z; Lin Z; Lei Y; Zhang S; Li S; Zhang S J Colloid Interface Sci; 2024 Apr; 659():422-431. PubMed ID: 38183808 [TBL] [Abstract][Full Text] [Related]
5. Modulating the Interlayer Spacing and Na Tie D; Gao G; Xia F; Yue R; Wang Q; Qi R; Wang B; Zhao Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):6978-6985. PubMed ID: 30688431 [TBL] [Abstract][Full Text] [Related]
6. Stabilizing P2-Type Ni-Mn Oxides as High-Voltage Cathodes by a Doping-Integrated Coating Strategy Based on Zinc for Sodium-Ion Batteries. Zhang F; Liao J; Xu L; Wu W; Wu X ACS Appl Mater Interfaces; 2021 Sep; 13(34):40695-40704. PubMed ID: 34427079 [TBL] [Abstract][Full Text] [Related]
7. Interfacial Engineering of P2-Type Ni/Mn-Based Layered Oxides by a Facile Water-Washing Method for Superior Sodium-Ion Batteries. Song M; Ye D; Li W; Lu C; Wu W; Wu X ACS Appl Mater Interfaces; 2024 Apr; 16(13):16120-16131. PubMed ID: 38511936 [TBL] [Abstract][Full Text] [Related]
8. Boosting the Ultrastable High-Na-Content P2-type Layered Cathode Materials with Zero-Strain Cation Storage via a Lithium Dual-Site Substitution Approach. Yang X; Wang S; Li H; Peng J; Zeng WJ; Tsai HJ; Hung SF; Indris S; Li F; Hua W ACS Nano; 2023 Sep; 17(18):18616-18628. PubMed ID: 37713681 [TBL] [Abstract][Full Text] [Related]
9. Inducing Na Gao M; Li H; Zhao Z; Wang X ACS Appl Mater Interfaces; 2024 Mar; 16(12):14789-14798. PubMed ID: 38482808 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the Role of Li and Mg Substitution in Layered Sodium Oxide Cathodes for Sodium-Ion Batteries. Wang JS; Shen MY; Li WC; Wu T ACS Appl Mater Interfaces; 2024 Aug; 16(33):43548-43555. PubMed ID: 39105758 [TBL] [Abstract][Full Text] [Related]
11. P2-Type Moisture-Stable and High-Voltage-Tolerable Cathodes for High-Energy and Long-Life Sodium-Ion Batteries. Yuan S; Yu L; Qian G; Xie Y; Guo P; Cui G; Ma J; Ren X; Xu Z; Lee SJ; Lee JS; Liu Y; Ren Y; Li L; Tan G; Liao X Nano Lett; 2023 Mar; 23(5):1743-1751. PubMed ID: 36811529 [TBL] [Abstract][Full Text] [Related]
12. Dual Modification of P3-Type Layered Cathodes to Achieve High Capacity and Long Cyclability for Sodium-Ion Batteries. Chen G; Ji H; Fang H; Zhai J; Ma Z; Ji W; Wang Y; Huang Y; Liu L; Tong W; Zeng W; Xiao Y ACS Appl Mater Interfaces; 2023 Jul; 15(28):33682-33692. PubMed ID: 37427424 [TBL] [Abstract][Full Text] [Related]
13. Unexpected Elevated Working Voltage by Na Wang Y; Jin J; Zhao X; Shen Q; Qu X; Jiao L; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202409152. PubMed ID: 38923635 [TBL] [Abstract][Full Text] [Related]
14. Suppressing the P2 - O2 phase transformation and Na Li F; Tian Y; Sun Y; Hou P; Wei X; Xu X J Colloid Interface Sci; 2022 Apr; 611():752-759. PubMed ID: 34887061 [TBL] [Abstract][Full Text] [Related]
15. Improving the Performance of Layered Oxide Cathode Materials with Football-Like Hierarchical Structure for Na-Ion Batteries by Incorporating Mg Li ZY; Wang H; Chen D; Sun K; Yang W; Yang J; Liu X; Han S ChemSusChem; 2018 Apr; 11(7):1223-1231. PubMed ID: 29400008 [TBL] [Abstract][Full Text] [Related]
16. Realizing Complete Solid-Solution Reaction in High Sodium Content P2-Type Cathode for High-Performance Sodium-Ion Batteries. Jin T; Wang PF; Wang QC; Zhu K; Deng T; Zhang J; Zhang W; Yang XQ; Jiao L; Wang C Angew Chem Int Ed Engl; 2020 Aug; 59(34):14511-14516. PubMed ID: 32500971 [TBL] [Abstract][Full Text] [Related]
17. New Observation Structural Change from O3 to P2 Type by Changing Sodium Contents for Na-Ion Batteries. Kim KT; Son JT J Nanosci Nanotechnol; 2019 Mar; 19(3):1364-1367. PubMed ID: 30469189 [TBL] [Abstract][Full Text] [Related]
18. Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. Wang QC; Meng JK; Yue XY; Qiu QQ; Song Y; Wu XJ; Fu ZW; Xia YY; Shadike Z; Wu J; Yang XQ; Zhou YN J Am Chem Soc; 2019 Jan; 141(2):840-848. PubMed ID: 30562030 [TBL] [Abstract][Full Text] [Related]
19. Na Kang SM; Park JH; Jin A; Jung YH; Mun J; Sung YE ACS Appl Mater Interfaces; 2018 Jan; 10(4):3562-3570. PubMed ID: 29300078 [TBL] [Abstract][Full Text] [Related]
20. Developing an abnormal high-Na-content P2-type layered oxide cathode with near-zero-strain for high-performance sodium-ion batteries. Hu HY; Li JY; Liu YF; Zhu YF; Li HW; Jia XB; Jian ZC; Liu HX; Kong LY; Li ZQ; Dong HH; Zhang MK; Qiu L; Wang JQ; Chen SQ; Wu XW; Guo XD; Xiao Y Chem Sci; 2024 Apr; 15(14):5192-5200. PubMed ID: 38577355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]