BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38651409)

  • 1. Efficient Expression of Functionally Active Aflibercept with Designed N-glycans.
    Keshvari T; Melnik S; Sun L; Niazi A; Aram F; Moghadam A; Kogelmann B; Wozniak-Knopp G; Kallolimath S; Ramezani A; Steinkellner H
    Antibodies (Basel); 2024 Apr; 13(2):. PubMed ID: 38651409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical comparability assessment on glycosylation of ziv-aflibercept and the biosimilar candidate.
    Shen Z; Wang Y; Xu H; Zhang Q; Sha C; Sun B; Li Q
    Int J Biol Macromol; 2021 Jun; 180():494-509. PubMed ID: 33684428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Glycan Microheterogeneity Evaluation of Aflibercept Fusion Protein by Glycopeptide-Based LC-MSMS Mapping.
    Lee JY; Choi JW; Hwang S; Hahm SH; Ahn YH
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans.
    Castilho A; Gattinger P; Grass J; Jez J; Pabst M; Altmann F; Gorfer M; Strasser R; Steinkellner H
    Glycobiology; 2011 Jun; 21(6):813-23. PubMed ID: 21317243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant plant-derived human IgE glycoproteomics.
    Montero-Morales L; Maresch D; Castilho A; Turupcu A; Ilieva KM; Crescioli S; Karagiannis SN; Lupinek C; Oostenbrink C; Altmann F; Steinkellner H
    J Proteomics; 2017 May; 161():81-87. PubMed ID: 28400175
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Montero-Morales L; Maresch D; Crescioli S; Castilho A; Ilieva KM; Mele S; Karagiannis SN; Altmann F; Steinkellner H
    Front Bioeng Biotechnol; 2019; 7():242. PubMed ID: 31632959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues.
    Raju TS; Briggs JB; Chamow SM; Winkler ME; Jones AJ
    Biochemistry; 2001 Jul; 40(30):8868-76. PubMed ID: 11467948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes.
    Göritzer K; Maresch D; Altmann F; Obinger C; Strasser R
    J Proteome Res; 2017 Jul; 16(7):2560-2570. PubMed ID: 28516782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody.
    Castilho A; Bohorova N; Grass J; Bohorov O; Zeitlin L; Whaley K; Altmann F; Steinkellner H
    PLoS One; 2011; 6(10):e26040. PubMed ID: 22039433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of sialylated mucin-type O-glycosylation in plants.
    Castilho A; Neumann L; Daskalova S; Mason HS; Steinkellner H; Altmann F; Strasser R
    J Biol Chem; 2012 Oct; 287(43):36518-26. PubMed ID: 22948156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides.
    Wormald MR; Rudd PM; Harvey DJ; Chang SC; Scragg IG; Dwek RA
    Biochemistry; 1997 Feb; 36(6):1370-80. PubMed ID: 9063885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs.
    Ruocco V; Vavra U; König-Beihammer J; Bolaños Martínez OC; Kallolimath S; Maresch D; Grünwald-Gruber C; Strasser R
    Front Plant Sci; 2023; 14():1275228. PubMed ID: 37868317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation.
    Castilho A; Gruber C; Thader A; Oostenbrink C; Pechlaner M; Steinkellner H; Altmann F
    MAbs; 2015; 7(5):863-70. PubMed ID: 26067753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity.
    Thomann M; Schlothauer T; Dashivets T; Malik S; Avenal C; Bulau P; Rüger P; Reusch D
    PLoS One; 2015; 10(8):e0134949. PubMed ID: 26266936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricted processing of CD16a/Fc γ receptor IIIa
    Patel KR; Roberts JT; Subedi GP; Barb AW
    J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors.
    Blundell PA; Le NPL; Allen J; Watanabe Y; Pleass RJ
    J Biol Chem; 2017 Aug; 292(31):12994-13007. PubMed ID: 28620050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of plant transient expression vectors for targeted N-glycosylation.
    Eidenberger L; Eminger F; Castilho A; Steinkellner H
    Front Bioeng Biotechnol; 2022; 10():1073455. PubMed ID: 36619384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation of Plant-Produced Immunoglobulins.
    Göritzer K; Strasser R
    Exp Suppl; 2021; 112():519-543. PubMed ID: 34687021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of biologically active multi-sialylated recombinant human EPOFc in plants.
    Castilho A; Neumann L; Gattinger P; Strasser R; Vorauer-Uhl K; Sterovsky T; Altmann F; Steinkellner H
    PLoS One; 2013; 8(1):e54836. PubMed ID: 23372778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.