These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38651635)
1. Resolving Uncertainties in the Quantification of Trace Elements within Organic-Rich Boreal Rivers for AF4-UV-ICP-MS Analysis. Wang Y; Cuss CW; Pei L; Shotyk W Anal Chem; 2024 May; 96(18):6889-6897. PubMed ID: 38651635 [TBL] [Abstract][Full Text] [Related]
2. Challenges in using 0.45 µm filters to assess potentially bioavailable trace elements in the dissolved fraction of river and peat bog waters of the Boreal Zone. Wang Y; Cuss CW; Barraza F; Luu A; Oleksandrenko A; Shotyk W Water Res; 2024 Oct; 268(Pt A):122586. PubMed ID: 39413709 [TBL] [Abstract][Full Text] [Related]
3. Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Worms IAM; Kavanagh K; Moulin E; Regier N; Slaveykova VI Front Chem; 2022; 10():800696. PubMed ID: 35252112 [TBL] [Abstract][Full Text] [Related]
4. Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation. Drozdova OY; Aleshina AR; Tikhonov VV; Lapitskiy SA; Pokrovsky OS Chemosphere; 2020 Jul; 250():126216. PubMed ID: 32087384 [TBL] [Abstract][Full Text] [Related]
5. Addressing Challenges of Membrane Clogging in AF4-UV-ICPMS Analysis for Size Determination of Trace Elements in Acidic, Organic-Rich Peat Bog Waters. Wang Y; Butt SA; Cuss CW; Pei L; Xue JP; Luu A; Barraza F; Shotyk W Anal Chem; 2024 Sep; 96(37):14953-14962. PubMed ID: 39285745 [TBL] [Abstract][Full Text] [Related]
6. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea). Sokolowski A; Wolowicz M; Hummel H Mar Pollut Bull; 2001 Oct; 42(10):967-80. PubMed ID: 11693652 [TBL] [Abstract][Full Text] [Related]
7. Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake. Shirokova LS; Pokrovsky OS; Moreva OY; Chupakov AV; Zabelina SA; Klimov SI; Shorina NV; Vorobieva TY Sci Total Environ; 2013 Oct; 463-464():78-90. PubMed ID: 23792250 [TBL] [Abstract][Full Text] [Related]
8. Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study. Baken S; Regelink IC; Comans RNJ; Smolders E; Koopmans GF Water Res; 2016 Aug; 99():83-90. PubMed ID: 27140905 [TBL] [Abstract][Full Text] [Related]
9. Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers. Cuss CW; Donner MW; Grant-Weaver I; Noernberg T; Pelletier R; Sinnatamby RN; Shotyk W Sci Total Environ; 2018 Nov; 642():1242-1251. PubMed ID: 30045505 [TBL] [Abstract][Full Text] [Related]
10. Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary. Wang W; Chen M; Guo L; Wang WX Sci Total Environ; 2017 Dec; 603-604():434-444. PubMed ID: 28641183 [TBL] [Abstract][Full Text] [Related]
11. Low biodegradability of dissolved organic matter and trace metals from subarctic waters. Oleinikova OV; Shirokova LS; Drozdova OY; Lapitskiy SA; Pokrovsky OS Sci Total Environ; 2018 Mar; 618():174-187. PubMed ID: 29128766 [TBL] [Abstract][Full Text] [Related]
12. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. Pokrovsky OS; Shirokova LS Water Res; 2013 Feb; 47(2):922-32. PubMed ID: 23219386 [TBL] [Abstract][Full Text] [Related]
13. Association of dissolved organic matter characteristics and trace metals in mountainous streams with sabo dams. Praise S; Ito H; Watanabe K; Sasaki A; Watanabe T Environ Sci Pollut Res Int; 2020 Jan; 27(1):456-468. PubMed ID: 31797272 [TBL] [Abstract][Full Text] [Related]
14. Concentration and fate of trace metals in Mekong River delta. Cenci RM; Martin JM Sci Total Environ; 2004 Oct; 332(1-3):167-82. PubMed ID: 15336900 [TBL] [Abstract][Full Text] [Related]
15. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter. Lee ST; Yang B; Kim JY; Park JH; Moon MH J Chromatogr A; 2015 Aug; 1409():218-25. PubMed ID: 26233252 [TBL] [Abstract][Full Text] [Related]
16. Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. Montaño MD; Cuss CW; Holliday HM; Javed MB; Shotyk W; Sobocinski KL; Hofmann T; Kammer FV; Ranville JF ACS Earth Space Chem; 2022 Apr; 6(4):943-952. PubMed ID: 35495366 [TBL] [Abstract][Full Text] [Related]
18. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China. Li L; Liu H; Li H Environ Sci Pollut Res Int; 2018 Oct; 25(28):28061-28074. PubMed ID: 30066079 [TBL] [Abstract][Full Text] [Related]
19. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Rapp I; Schlosser C; Rusiecka D; Gledhill M; Achterberg EP Anal Chim Acta; 2017 Jul; 976():1-13. PubMed ID: 28576313 [TBL] [Abstract][Full Text] [Related]
20. AF4-UV-MALS-ICP-MS/MS, spICP-MS, and STEM-EDX for the Characterization of Metal-Containing Nanoparticles in Gas Condensates from Petroleum Hydrocarbon Samples. Ruhland D; Nwoko K; Perez M; Feldmann J; Krupp EM Anal Chem; 2019 Jan; 91(1):1164-1170. PubMed ID: 30516958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]