BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38651835)

  • 1. Tuning Photoredox Catalysis of Ruthenium with Palladium: Synthesis of Heterobimetallic Ru-Pd Complexes That Enable Efficient Photochemical Reduction of CO
    Yang S; Morita Y; Nakamura Y; Iwasawa N; Takaya J
    J Am Chem Soc; 2024 May; 146(18):12288-12293. PubMed ID: 38651835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterobimetallic Gold/Ruthenium Complexes Synthesized via Post-functionalization and Applied in Dual Photoredox Gold Catalysis.
    Bayer L; Birenheide BS; Krämer F; Lebedkin S; Breher F
    Chemistry; 2022 Oct; 28(57):e202201856. PubMed ID: 35924459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-to-Metal Distance Modulated Au(I)/Ru(II) Cyclophanyl Complexes: Cooperative Effects in Photoredox Catalysis.
    Zippel C; Israil R; Schüssler L; Hassan Z; Schneider EK; Weis P; Nieger M; Bizzarri C; Kappes MM; Riehn C; Diller R; Bräse S
    Chemistry; 2021 Nov; 27(61):15187-15200. PubMed ID: 34655123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands.
    Kobayashi K; Tanaka K
    Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Structure, and Catalysis of Palladium Complexes Bearing a Group 13 Metalloligand: Remarkable Effect of an Aluminum-Metalloligand in Hydrosilylation of CO
    Takaya J; Iwasawa N
    J Am Chem Soc; 2017 May; 139(17):6074-6077. PubMed ID: 28423896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium(ii) and palladium(ii) homo- and heterobimetallic complexes: synthesis, crystal structures, theoretical calculations and biological studies.
    Askari B; Amiri Rudbari H; Micale N; Schirmeister T; Efferth T; Seo EJ; Bruno G; Schwickert K
    Dalton Trans; 2019 Nov; 48(42):15869-15887. PubMed ID: 31620752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine-unusual building blocks for the synthesis of photochemical molecular devices.
    Schwalbe M; Karnahl M; Görls H; Chartrand D; Laverdiere F; Hanan GS; Tschierlei S; Dietzek B; Schmitt M; Popp J; Vos JG; Rau S
    Dalton Trans; 2009 May; (20):4012-22. PubMed ID: 19440601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of bridging ligand in hydrogen generation by photocatalytic Ru/Pd assemblies.
    Bindra GS; Schulz M; Paul A; Groarke R; Soman S; Inglis JL; Browne WR; Pfeffer MG; Rau S; MacLean BJ; Pryce MT; Vos JG
    Dalton Trans; 2012 Nov; 41(42):13050-9. PubMed ID: 23014910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol.
    Mohamed Subarkhan M; Ramesh R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():264-70. PubMed ID: 25498823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Photoredox Catalysis in Aqueous Environments: Ruthenium Aqua Complex Derivatization of Graphene Oxide and Graphite Rods for Efficient Visible-Light-Driven Hybrid Catalysts.
    Affès S; Stamatelou AM; Fontrodona X; Kabadou A; Viñas C; Teixidor F; Romero I
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):507-519. PubMed ID: 38114421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function-Integrated Ru Catalyst for Photochemical CO
    Lee SK; Kondo M; Okamura M; Enomoto T; Nakamura G; Masaoka S
    J Am Chem Soc; 2018 Dec; 140(49):16899-16903. PubMed ID: 30472827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework Photocatalyst Incorporating Bis(4'-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction.
    Elcheikh Mahmoud M; Audi H; Assoud A; Ghaddar TH; Hmadeh M
    J Am Chem Soc; 2019 May; 141(17):7115-7121. PubMed ID: 30974057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging.
    Li A; Turro C; Kodanko JJ
    Acc Chem Res; 2018 Jun; 51(6):1415-1421. PubMed ID: 29870227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.