These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38651864)

  • 1. Chemical Composition Modulation Realizing Remarkable Improvement of Thermoelectric Performance in CuInTe
    Qu L; Luo Y; Li C; Du Z; Li X; Cui J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38651864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band Structure and Phonon Transport Engineering Realizing Remarkable Improvement in Thermoelectric Performance of Cu
    Qu L; Yang C; Luo Y; Du Z; Li C; Cui J
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45628-45635. PubMed ID: 36190823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction of zinc.
    Yang J; Chen S; Du Z; Liu X; Cui J
    Dalton Trans; 2014 Oct; 43(40):15228-36. PubMed ID: 25187213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu
    He S; Luo Y; Xu L; Wang Y; Han Z; Li X; Cui J
    Inorg Chem; 2021 Aug; 60(15):11120-11128. PubMed ID: 34286572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics.
    Li J; Chen Z; Zhang X; Yu H; Wu Z; Xie H; Chen Y; Pei Y
    Adv Sci (Weinh); 2017 Dec; 4(12):1700341. PubMed ID: 29270343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Band Structure via the Site Preference of Pb(2+) in the In(+) Site for Enhanced Thermoelectric Performance of In6Se7.
    Cui J; Cheng M; Wu W; Du Z; Chao Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23175-80. PubMed ID: 27541319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence.
    Chen Z; Jian Z; Li W; Chang Y; Ge B; Hanus R; Yang J; Chen Y; Huang M; Snyder GJ; Pei Y
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems.
    Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High thermoelectric performance from optimization of hole-doped CuInTe2.
    Zhou G; Wang D
    Phys Chem Chem Phys; 2016 Feb; 18(8):5925-31. PubMed ID: 26593866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi
    Li J; Xie Y; Zhang C; Ma K; Liu F; Ao W; Li Y; Zhang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20064-20072. PubMed ID: 31091077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry in Advancing Thermoelectric GeTe Materials.
    Hong M; Chen ZG
    Acc Chem Res; 2022 Nov; 55(21):3178-3190. PubMed ID: 36223096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.
    Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving High-Performance Ge
    Sun Q; Shi XL; Hong M; Yin Y; Xu SD; Chen J; Yang L; Zou J; Chen ZG
    Small; 2022 Feb; 18(6):e2105923. PubMed ID: 34854565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior thermoelectric properties of ternary chalcogenides CsAg
    Jong UG; Kang CJ; Kim SY; Kim HC; Yu CJ
    Phys Chem Chem Phys; 2022 Mar; 24(9):5729-5737. PubMed ID: 35188508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Thermoelectric Performance of CuInTe
    Yang E; Jiang Q; Li G; Tian Z; Li J; Kang H; Chen Z; Guo E; Wang J; Wang T
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49370-49378. PubMed ID: 37824824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-regulation of the copper vacancy concentration and point defects leading to the enhanced thermoelectric performance of Cu
    Li M; Luo Y; Hu X; Han Z; Liu X; Cui J
    RSC Adv; 2019 Oct; 9(54):31747-31752. PubMed ID: 35527929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Thermoelectric Performance in Ge
    Xie L; Liu R; Zhu C; Bu Z; Qiu W; Liu J; Xu F; Pei Y; Bai S; Chen L
    Small; 2021 Jun; 17(25):e2100915. PubMed ID: 34032385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.