These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38651870)
21. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Peng F; Setyawati MI; Tee JK; Ding X; Wang J; Nga ME; Ho HK; Leong DT Nat Nanotechnol; 2019 Mar; 14(3):279-286. PubMed ID: 30692675 [TBL] [Abstract][Full Text] [Related]
22. Study on the molecular mechanism of gold nanorods interacting with fibrinogen and transferrin to form protein corona. Li X; Shi L; Song Z; Sun Y; Wu X; Dong Z; Yan Y Int J Biol Macromol; 2024 Oct; 278(Pt 2):134812. PubMed ID: 39163954 [TBL] [Abstract][Full Text] [Related]
23. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Liu J; Peng Q Acta Biomater; 2017 Jun; 55():13-27. PubMed ID: 28377307 [TBL] [Abstract][Full Text] [Related]
24. Different binding sites of serum albumins in the protein corona of gold nanoparticles. Szekeres GP; Kneipp J Analyst; 2018 Dec; 143(24):6061-6068. PubMed ID: 30420985 [TBL] [Abstract][Full Text] [Related]
25. Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis. Shadmani P; Mehrafrooz B; Montazeri A; Naghdabadi R J Phys Condens Matter; 2020 Mar; 32(11):115101. PubMed ID: 31751982 [TBL] [Abstract][Full Text] [Related]
26. Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. Zyuzin MV; Yan Y; Hartmann R; Gause KT; Nazarenus M; Cui J; Caruso F; Parak WJ Bioconjug Chem; 2017 Aug; 28(8):2062-2068. PubMed ID: 28644614 [TBL] [Abstract][Full Text] [Related]
27. How Entanglement of Different Physicochemical Properties Complicates the Prediction of in Vitro and in Vivo Interactions of Gold Nanoparticles. Xu M; Soliman MG; Sun X; Pelaz B; Feliu N; Parak WJ; Liu S ACS Nano; 2018 Oct; 12(10):10104-10113. PubMed ID: 30212621 [TBL] [Abstract][Full Text] [Related]
28. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Afantitis A; Melagraki G; Tsoumanis A; Valsami-Jones E; Lynch I Nanotoxicology; 2018 Dec; 12(10):1148-1165. PubMed ID: 30182778 [TBL] [Abstract][Full Text] [Related]
29. Intentional formation of a protein corona on nanoparticles: Serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Gräfe C; Weidner A; Lühe MV; Bergemann C; Schacher FH; Clement JH; Dutz S Int J Biochem Cell Biol; 2016 Jun; 75():196-202. PubMed ID: 26556312 [TBL] [Abstract][Full Text] [Related]
30. The effects of serum albumin pre-adsorption of nanoparticles on protein corona and membrane interaction: A molecular simulation study. Li L; Yang Y; Wang L; Xu F; Li Y; He X J Mol Biol; 2023 Jan; 435(1):167771. PubMed ID: 35931108 [TBL] [Abstract][Full Text] [Related]
31. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Liu R; Jiang W; Walkey CD; Chan WC; Cohen Y Nanoscale; 2015 Jun; 7(21):9664-75. PubMed ID: 25959034 [TBL] [Abstract][Full Text] [Related]
32. Beyond Global Charge: Role of Amine Bulkiness and Protein Fingerprint on Nanoparticle-Cell Interaction. Burnand D; Milosevic A; Balog S; Spuch-Calvar M; Rothen-Rutishauser B; Dengjel J; Kinnear C; Moore TL; Petri-Fink A Small; 2018 Nov; 14(46):e1802088. PubMed ID: 30198074 [TBL] [Abstract][Full Text] [Related]
33. Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles. Lasak M; Ciepluch K Beilstein J Nanotechnol; 2023; 14():329-338. PubMed ID: 36925613 [TBL] [Abstract][Full Text] [Related]
34. Different interaction modes of biomolecules with citrate-capped gold nanoparticles. Zhang S; Moustafa Y; Huo Q ACS Appl Mater Interfaces; 2014 Dec; 6(23):21184-92. PubMed ID: 25347206 [TBL] [Abstract][Full Text] [Related]
35. Design of surface ligands for blood compatible gold nanoparticles: Effect of charge and binding energy. Beurton J; Lavalle P; Pallotta A; Chaigneau T; Clarot I; Boudier A Int J Pharm; 2020 Apr; 580():119244. PubMed ID: 32201250 [TBL] [Abstract][Full Text] [Related]
36. How Corona Formation Impacts Nanomaterials as Drug Carriers. Gupta MN; Roy I Mol Pharm; 2020 Mar; 17(3):725-737. PubMed ID: 31939673 [TBL] [Abstract][Full Text] [Related]
37. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR). Kamath P; Fernandez A; Giralt F; Rallo R Curr Top Med Chem; 2015; 15(18):1930-7. PubMed ID: 25961528 [TBL] [Abstract][Full Text] [Related]
38. Engineering tumoral vascular leakiness with gold nanoparticles. Setyawati MI; Wang Q; Ni N; Tee JK; Ariga K; Ke PC; Ho HK; Wang Y; Leong DT Nat Commun; 2023 Jul; 14(1):4269. PubMed ID: 37460554 [TBL] [Abstract][Full Text] [Related]
39. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Barbero F; Russo L; Vitali M; Piella J; Salvo I; Borrajo ML; Busquets-Fité M; Grandori R; Bastús NG; Casals E; Puntes V Semin Immunol; 2017 Dec; 34():52-60. PubMed ID: 29066063 [TBL] [Abstract][Full Text] [Related]
40. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide-Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona. Barbero F; Moriones OH; Bastús NG; Puntes V Bioconjug Chem; 2019 Nov; 30(11):2917-2930. PubMed ID: 31621309 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]