These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3865195)

  • 1. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket.
    Hoy RR; Nolen TG; Casaday GC
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7772-6. PubMed ID: 3865195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus.
    Horch HW; McCarthy SS; Johansen SL; Harris JM
    Insect Mol Biol; 2009 Aug; 18(4):483-96. PubMed ID: 19453768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket Gryllus bimaculatus.
    Horch HW; Sheldon E; Cutting CC; Williams CR; Riker DM; Peckler HR; Sangal RB
    Dev Neurosci; 2011; 33(1):21-37. PubMed ID: 21346310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo assembly of a transcriptome for the cricket Gryllus bimaculatus prothoracic ganglion: An invertebrate model for investigating adult central nervous system compensatory plasticity.
    Fisher HP; Pascual MG; Jimenez SI; Michaelson DA; Joncas CT; Quenzer ED; Christie AE; Horch HW
    PLoS One; 2018; 13(7):e0199070. PubMed ID: 29995882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of synaptic contacts between identified neurons of the auditory pathway in Gryllus bimaculatus DeGeer.
    Hirtz R; Wiese K
    J Comp Neurol; 1997 Sep; 386(3):347-57. PubMed ID: 9303422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deafferentation slows the growth of specific dendrites of identified giant interneurons.
    Murphey RK; Mendenhall B; Palka J; Edwards JS
    J Comp Neurol; 1975 Feb; 159(3):407-18. PubMed ID: 1112917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.
    Hennig RM
    J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound sensitive neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1990 Mar; 166(5):651-62. PubMed ID: 2341990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation.
    Davis GW; Murphey RK
    J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.
    Wolf H; Büschges A
    J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of sensory parameters from a neural map by primary sensory interneurons.
    Jacobs GA; Theunissen FE
    J Neurosci; 2000 Apr; 20(8):2934-43. PubMed ID: 10751446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron.
    Jacobs GA; Miller JP; Murphey RK
    J Neurosci; 1986 Aug; 6(8):2298-311. PubMed ID: 3746411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cellular basis of a corollary discharge.
    Poulet JF; Hedwig B
    Science; 2006 Jan; 311(5760):518-22. PubMed ID: 16439660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae).
    Ostrowski TD; Stumpner A
    J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional specialization in synaptic input and output in an identified local nonspiking interneuron of the crayfish revealed by light and electron microscopy.
    Kondoh Y; Hisada M
    J Comp Neurol; 1986 Sep; 251(3):334-48. PubMed ID: 3771834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.