These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38651998)
21. Broadband near-infrared TiO Zhu Y; Lan T; Liu P; Yang J Appl Opt; 2019 Sep; 58(26):7134-7138. PubMed ID: 31503985 [TBL] [Abstract][Full Text] [Related]
22. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Zheng Z; Zheng Y; Luo Y; Yi Z; Zhang J; Liu Z; Yang W; Yu Y; Wu X; Wu P Phys Chem Chem Phys; 2022 Jan; 24(4):2527-2533. PubMed ID: 35023523 [TBL] [Abstract][Full Text] [Related]
23. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. Wu F; Shi P; Yi Z; Li H; Yi Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241609 [TBL] [Abstract][Full Text] [Related]
24. Adjustable Trifunctional Mid-Infrared Metamaterial Absorber Based on Phase Transition Material VO Lian Y; Li Y; Lou Y; Liu Z; Jiang C; Hu Z; Wang J Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368259 [TBL] [Abstract][Full Text] [Related]
25. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953 [TBL] [Abstract][Full Text] [Related]
26. Dynamically tunable broadband absorber/reflector based on graphene and VO Wang X; Ma C; Xiao L; Li X; Yu J; Xiao B Appl Opt; 2022 Mar; 61(7):1646-1651. PubMed ID: 35297840 [TBL] [Abstract][Full Text] [Related]
28. Multitasking device with switchable and tailored functions of ultra-broadband absorption and polarization conversion. Zhang H; He X; Zhang D; Zhang H Opt Express; 2022 Jun; 30(13):23341-23358. PubMed ID: 36225017 [TBL] [Abstract][Full Text] [Related]
29. Dynamically Temperature-Voltage Controlled Multifunctional Device Based on VO Mao M; Liang Y; Liang R; Zhao L; Xu N; Guo J; Wang F; Meng H; Liu H; Wei Z Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31374845 [TBL] [Abstract][Full Text] [Related]
30. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces. Dang PT; Le KQ; Lee JH; Nguyen TK Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301 [TBL] [Abstract][Full Text] [Related]
31. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Li H; Xu W; Cui Q; Wang Y; Yu J Opt Express; 2020 Dec; 28(26):40060-40074. PubMed ID: 33379540 [TBL] [Abstract][Full Text] [Related]
32. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Wu G; Jiao X; Wang Y; Zhao Z; Wang Y; Liu J Opt Express; 2021 Jan; 29(2):2703-2711. PubMed ID: 33726461 [TBL] [Abstract][Full Text] [Related]
33. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429 [TBL] [Abstract][Full Text] [Related]
34. Near-ideal optical metamaterial absorbers with super-octave bandwidth. Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069 [TBL] [Abstract][Full Text] [Related]
35. Tunable wideband-narrowband switchable absorber based on vanadium dioxide and graphene. Chen W; Li C; Wang D; An W; Gao S; Zhang C; Guo S Opt Express; 2022 Nov; 30(23):41328-41339. PubMed ID: 36366613 [TBL] [Abstract][Full Text] [Related]
36. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Lei L; Li S; Huang H; Tao K; Xu P Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770 [TBL] [Abstract][Full Text] [Related]
37. Mid-infrared tunable absorber based on an Ag/SiO Huang J; Li R; Zhang H; Wu Y; Wang Y; Yan C; Han C Opt Express; 2024 Mar; 32(6):9995-10004. PubMed ID: 38571222 [TBL] [Abstract][Full Text] [Related]
39. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Qi B; Chen W; Niu T; Mei Z Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702 [TBL] [Abstract][Full Text] [Related]
40. Broadband switching of mid-infrared atmospheric windows by VO Sun R; Zhou P; Ai W; Liu Y; Li Y; Jiang R; Li W; Weng X; Bi L; Deng L Opt Express; 2019 Apr; 27(8):11537-11546. PubMed ID: 31052997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]