These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3865209)

  • 1. Disulfide bond formation in the eye lens.
    Yu NT; DeNagel DC; Pruett PL; Kuck JF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7965-8. PubMed ID: 3865209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopic evidence for nuclear disulfide in isolated lenses of hyperbaric oxygen-treated guinea pigs.
    Gosselin ME; Kapustij CJ; Venkateswaran UD; Leverenz VR; Giblin FJ
    Exp Eye Res; 2007 Mar; 84(3):493-9. PubMed ID: 17196965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Raman study of disulfide and sulfhydryl in the Emory mouse cataract.
    DeNagel DC; Bando M; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):823-6. PubMed ID: 3366572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopic evaluation of aging and long-wave UV exposure in the guinea pig lens: a possible model for human aging.
    Barron BC; Yu NT; Kuck JF
    Exp Eye Res; 1988 Feb; 46(2):249-58. PubMed ID: 3350069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular aging of lens crystallins and the life expectancy of the animal. Age-related protein structural changes studied in situ by Raman spectroscopy.
    Ozaki Y; Mizuno A
    Biochim Biophys Acta; 1992 Jun; 1121(3):245-51. PubMed ID: 1627601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear light scattering, disulfide formation and membrane damage in lenses of older guinea pigs treated with hyperbaric oxygen.
    Giblin FJ; Padgaonkar VA; Leverenz VR; Lin LR; Lou MF; Unakar NJ; Dang L; Dickerson JE; Reddy VN
    Exp Eye Res; 1995 Mar; 60(3):219-35. PubMed ID: 7789403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo.
    Giblin FJ; David LL; Wilmarth PA; Leverenz VR; Simpanya MF
    Mol Vis; 2013; 19():267-80. PubMed ID: 23401655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF; Xu GT; Cui XL
    Curr Eye Res; 1995 Oct; 14(10):951-8. PubMed ID: 8549161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens.
    Ozaki Y; Mizuno A; Itoh K; Yoshiura M; Iwamoto T; Iriyama K
    Biochemistry; 1983 Dec; 22(26):6254-9. PubMed ID: 6661433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects.
    Giblin FJ; Leverenz VR; Padgaonkar VA; Unakar NJ; Dang L; Lin LR; Lou MF; Reddy VN; Borchman D; Dillon JP
    Exp Eye Res; 2002 Oct; 75(4):445-58. PubMed ID: 12387792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis.
    Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation in the lens.
    Lou MF
    Prog Retin Eye Res; 2003 Sep; 22(5):657-82. PubMed ID: 12892645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light.
    Barron BC; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):815-21. PubMed ID: 3570691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging.
    Ozaki Y; Mizuno A; Itoh K; Iriyama K
    J Biol Chem; 1987 Nov; 262(32):15545-51. PubMed ID: 3680210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and function of glutathione in the lens.
    Reddy VN; Giblin FJ
    Ciba Found Symp; 1984; 106():65-87. PubMed ID: 6568981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen.
    Padgaonkar V; Giblin FJ; Reddy VN
    Exp Eye Res; 1989 Nov; 49(5):887-99. PubMed ID: 2591503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging and cataractous process of the lens detected by laser Raman spectroscopy.
    Mizuno A; Ozaki Y
    Lens Eye Toxic Res; 1991; 8(2-3):177-87. PubMed ID: 1832955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.