These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3865209)

  • 21. Evidence of Highly Conserved β-Crystallin Disulfidome that Can be Mimicked by In Vitro Oxidation in Age-related Human Cataract and Glutathione Depleted Mouse Lens.
    Fan X; Zhou S; Wang B; Hom G; Guo M; Li B; Yang J; Vaysburg D; Monnier VM
    Mol Cell Proteomics; 2015 Dec; 14(12):3211-23. PubMed ID: 26453637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiol regulation in the lens.
    Lou MF
    J Ocul Pharmacol Ther; 2000 Apr; 16(2):137-48. PubMed ID: 10803424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological and biochemical changes in lenses of guinea pigs after vitamin-C-deficient diet and UV-B radiation.
    Malik A; Kojima M; Sasaki K
    Ophthalmic Res; 1995; 27(4):189-96. PubMed ID: 8538997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new mixed disulfide species in human cataractous and aged lenses.
    Dickerson JE; Lou MF
    Biochim Biophys Acta; 1993 Jun; 1157(2):141-6. PubMed ID: 8507650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman spectroscopy of calf lens gamma-II crystallin: direct evidence for the formation of mixed disulfide bonds with 2-mercaptoethanol and glutathione.
    Yu NT; DeNagel DC; Slingsby C
    Exp Eye Res; 1989 Mar; 48(3):399-410. PubMed ID: 2924822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging.
    Nye-Wood MG; Spraggins JM; Caprioli RM; Schey KL; Donaldson PJ; Grey AC
    Exp Eye Res; 2017 Jan; 154():70-78. PubMed ID: 27838309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The presence of a human UV filter within the lens represents an oxidative stress.
    Berry Y; Truscott RJ
    Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of protein-thiol mixed disulfides in cataractogenesis.
    Lou MF; Dickerson JE; Garadi R
    Exp Eye Res; 1990 Jun; 50(6):819-26. PubMed ID: 2373174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. Deuterium exchange as a probe for accessible sulfhydryl in living tissue.
    East EJ; Chang RC; Yu NT; Kuck JF
    J Biol Chem; 1978 Mar; 253(5):1436-41. PubMed ID: 627547
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of opacification and pigmentation on human lens protein thiol/disulfide and solubility.
    Lou MF; Huang QL; Zigler JS
    Curr Eye Res; 1989 Sep; 8(9):883-90. PubMed ID: 2791632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative-stress induced protein glutathione mixed-disulfide formation in the ocular lens.
    Willis JA; Schleich T
    Biochim Biophys Acta; 1996 Aug; 1313(1):20-8. PubMed ID: 8781545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does glutathione-S-transferase dethiolate lens protein-thiol mixed disulfides?-A comparative study with thioltransferase.
    Raghavachari N; Qiao F; Lou MF
    Exp Eye Res; 1999 Jun; 68(6):715-24. PubMed ID: 10375435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The culture of rat lenses in high sugar media: effect on mixed disulfide levels.
    Dickerson JE; Lou MF; Gracy RW
    Curr Eye Res; 1995 Feb; 14(2):109-18. PubMed ID: 7768104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms and potential clinical significance of S-glutathionylation.
    Dalle-Donne I; Milzani A; Gagliano N; Colombo R; Giustarini D; Rossi R
    Antioxid Redox Signal; 2008 Mar; 10(3):445-73. PubMed ID: 18092936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutathionylation of lens proteins through the formation of thioether bond.
    Linetsky M; LeGrand RD
    Mol Cell Biochem; 2005 Apr; 272(1-2):133-44. PubMed ID: 16010980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The early biochemical changes of cataractous lenses of rats cultured in vitro].
    Dong D; Lu A; Liu Y; Jia W; Hou W
    Zhonghua Yan Ke Za Zhi; 2000 Sep; 36(5):344-7, 21. PubMed ID: 11853625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for the presence of thioltransferase in the lens.
    Raghavachari N; Lou MF
    Exp Eye Res; 1996 Oct; 63(4):433-41. PubMed ID: 8944550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract.
    Simpanya MF; Ansari RR; Leverenz V; Giblin FJ
    Photochem Photobiol; 2008; 84(6):1589-95. PubMed ID: 18627516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship of protein-glutathione mixed disulfide and thioltransferase in H2O2-induced cataract in cultured pig lens.
    Wang GM; Raghavachari N; Lou MF
    Exp Eye Res; 1997 May; 64(5):693-700. PubMed ID: 9245898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-thiol mixed disulfides in human lens.
    Lou MF; Dickerson JE
    Exp Eye Res; 1992 Dec; 55(6):889-96. PubMed ID: 1486943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.