These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38652161)

  • 1. A variety-specific analysis of climate change effects on California winegrapes.
    Parker LE; Zhang N; Abatzoglou JT; Kisekka I; McElrone AJ; Ostoja SM
    Int J Biometeorol; 2024 Aug; 68(8):1559-1571. PubMed ID: 38652161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity buffers winegrowing regions from climate change losses.
    Morales-Castilla I; García de Cortázar-Atauri I; Cook BI; Lacombe T; Parker A; van Leeuwen C; Nicholas KA; Wolkovich EM
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2864-2869. PubMed ID: 31988113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme heat reduces and shifts United States premium wine production in the 21st century.
    White MA; Diffenbaugh NS; Jones GV; Pal JS; Giorgi F
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11217-22. PubMed ID: 16840557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions.
    Barnuud NN; Zerihun A; Mpelasoka F; Gibberd M; Bates B
    Int J Biometeorol; 2014 Aug; 58(6):1279-93. PubMed ID: 24026877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.
    Fraga H; García de Cortázar Atauri I; Malheiro AC; Santos JA
    Glob Chang Biol; 2016 Nov; 22(11):3774-3788. PubMed ID: 27254813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projected Wine Grape Cultivar Shifts Due to Climate Change in New Zealand.
    Ausseil AE; Law RM; Parker AK; Teixeira EI; Sood A
    Front Plant Sci; 2021; 12():618039. PubMed ID: 33968094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.
    Cabré MF; Quénol H; Nuñez M
    Int J Biometeorol; 2016 Sep; 60(9):1325-40. PubMed ID: 26823161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grape cultivars adapted to hotter, drier growing regions exhibit greater photosynthesis in hot conditions despite less drought-resistant leaves.
    Sinclair G; Galarneau ER; Hnizdor JF; McElrone AJ; Walker MA; Bartlett MK
    Ann Bot; 2024 Jul; 134(2):205-218. PubMed ID: 38477369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grapevine phenology and climate change in Georgia.
    Cola G; Failla O; Maghradze D; Megrelidze L; Mariani L
    Int J Biometeorol; 2017 Apr; 61(4):761-773. PubMed ID: 27714505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grapevine Responses to Heat Stress and Global Warming.
    Venios X; Korkas E; Nisiotou A; Banilas G
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geography and vintage predicted by a novel GIS model of wine delta18O.
    West JB; Ehleringer JR; Cerling TE
    J Agric Food Chem; 2007 Aug; 55(17):7075-83. PubMed ID: 17658829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change reduces frost exposure for high-value California orchard crops.
    Parker L; Pathak T; Ostoja S
    Sci Total Environ; 2021 Mar; 762():143971. PubMed ID: 33373749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Berry composition and climate: responses and empirical models.
    Barnuud NN; Zerihun A; Gibberd M; Bates B
    Int J Biometeorol; 2014 Aug; 58(6):1207-23. PubMed ID: 23958789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Losing ground: projections of climate-driven bloom shifts and their implications for the future of California's almond orchards.
    Orozco J; Lauterman O; Sperling O; Paz-Kagan T; Zwieniecki MA
    Sci Rep; 2024 Jan; 14(1):636. PubMed ID: 38182702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates.
    Hall A; Mathews AJ; Holzapfel BP
    Int J Biometeorol; 2016 Sep; 60(9):1405-22. PubMed ID: 26826103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.
    Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB
    Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate.
    Lamarque LJ; Delmas CEL; Charrier G; Burlett R; Dell'Acqua N; Pouzoulet J; Gambetta GA; Delzon S
    Sci Rep; 2023 May; 13(1):7724. PubMed ID: 37173393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An index method to evaluate growers' pesticide use for identifying on-farm innovations and effective alternative pest management strategies: a case study of winegrape in Madera County, California.
    Li WJ; Qin ZH; Zhang MH; Browde J
    J Zhejiang Univ Sci B; 2011 Mar; 12(3):226-46. PubMed ID: 21370508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between viticultural climatic indices and grape maturity in Australia.
    Jarvis C; Barlow E; Darbyshire R; Eckard R; Goodwin I
    Int J Biometeorol; 2017 Oct; 61(10):1849-1862. PubMed ID: 28540490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.