These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38652182)

  • 21. Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter.
    Nakao S; Takeo T; Watanabe H; Kondoh G; Nakagata N
    Sci Rep; 2020 Jun; 10(1):8862. PubMed ID: 32483250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Review of the Impact of Microfluidics Technology on Sperm Selection Technique.
    Olatunji O; More A
    Cureus; 2022 Jul; 14(7):e27369. PubMed ID: 36046322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization.
    Weng L
    SLAS Technol; 2019 Aug; 24(4):373-385. PubMed ID: 31145861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics for gametes, embryos, and embryonic stem cells.
    Smith GD; Swain JE; Bormann CL
    Semin Reprod Med; 2011 Jan; 29(1):5-14. PubMed ID: 21207330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of paternal overweight on sperm chromatin integrity, fertilization rate and pregnancy outcome among males attending fertility clinic for IVF/ICSI treatment.
    Bibi R; Jahan S; Afsar T; Almajwal A; Hammadeh ME; Alruwaili NW; Razak S; Amor H
    BMC Pregnancy Childbirth; 2022 Aug; 22(1):620. PubMed ID: 35931982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method.
    Sharafatdoust Asl A; Zabetian Targhi M; Zeaei S; Halvaei I; Nosrati R
    Lab Chip; 2024 Oct; 24(20):4907-4917. PubMed ID: 39314182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility.
    Lee TH; Liu CH; Shih YT; Tsao HM; Huang CC; Chen HH; Lee MS
    Hum Reprod; 2010 Apr; 25(4):839-46. PubMed ID: 20150175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications.
    Sequeira RC; Criswell T; Atala A; Yoo JJ
    Tissue Eng Regen Med; 2020 Dec; 17(6):787-800. PubMed ID: 33237567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profiling the male germline genome to unravel its reproductive potential.
    Cheung S; Xie P; Rosenwaks Z; Palermo GD
    Fertil Steril; 2023 Feb; 119(2):196-206. PubMed ID: 36379263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of sperm separation methods before intrauterine insemination on pregnancy outcomes and live birth rates: Differences between the swim-up and microfluidic chip techniques.
    Feyzioglu BS; Avul Z
    Medicine (Baltimore); 2023 Nov; 102(46):e36042. PubMed ID: 37986402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic sperm sorting selects a subpopulation of high-quality sperm with a higher potential for fertilization.
    Sheibak N; Amjadi F; Shamloo A; Zarei F; Zandieh Z
    Hum Reprod; 2024 May; 39(5):902-911. PubMed ID: 38461455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles.
    Villani MT; Morini D; Spaggiari G; Falbo AI; Melli B; La Sala GB; Romeo M; Simoni M; Aguzzoli L; Santi D
    Andrology; 2022 Feb; 10(2):310-321. PubMed ID: 34723422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pregnancy outcomes after assisted human reproduction.
    Okun N; Sierra S; ;
    J Obstet Gynaecol Can; 2014 Jan; 36(1):64-83. PubMed ID: 24444289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disposable paper-based microfluidics for fertility testing.
    Sarabi MR; Yigci D; Alseed MM; Mathyk BA; Ata B; Halicigil C; Tasoglu S
    iScience; 2022 Sep; 25(9):104986. PubMed ID: 36105592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sperm selection methods in the 21st century.
    Vaughan DA; Sakkas D
    Biol Reprod; 2019 Dec; 101(6):1076-1082. PubMed ID: 30801632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic devices for the study of sperm migration.
    Suarez SS; Wu M
    Mol Hum Reprod; 2017 Apr; 23(4):227-234. PubMed ID: 27385726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sperm processing for advanced reproductive technologies: Where are we today?
    Rappa KL; Rodriguez HF; Hakkarainen GC; Anchan RM; Mutter GL; Asghar W
    Biotechnol Adv; 2016; 34(5):578-587. PubMed ID: 26845061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing male gamete genome integrity to ameliorate poor assisted reproductive technology clinical outcome.
    Kocur OM; Xie P; Souness S; Cheung S; Rosenwaks Z; Palermo GD
    F S Sci; 2023 Feb; 4(1):2-10. PubMed ID: 35973556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions.
    Vasilescu SA; Khorsandi S; Ding L; Bazaz SR; Nosrati R; Gook D; Warkiani ME
    Sci Rep; 2021 Apr; 11(1):7917. PubMed ID: 33846481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lab-on-a-chip biophotonics: its application to assisted reproductive technologies.
    Lai D; Smith GD; Takayama S
    J Biophotonics; 2012 Aug; 5(8-9):650-60. PubMed ID: 22700221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.