These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38652544)

  • 1. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism.
    Siripoksup P; Cao G; Cluntun AA; Maschek JA; Pearce Q; Brothwell MJ; Jeong MY; Eshima H; Ferrara PJ; Opurum PC; Mahmassani ZS; Peterlin AD; Watanabe S; Walsh MA; Taylor EB; Cox JE; Drummond MJ; Rutter J; Funai K
    J Clin Invest; 2024 Apr; 134(11):. PubMed ID: 38652544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness.
    Sharma A; Oonthonpan L; Sheldon RD; Rauckhorst AJ; Zhu Z; Tompkins SC; Cho K; Grzesik WJ; Gray LR; Scerbo DA; Pewa AD; Cushing EM; Dyle MC; Cox JE; Adams C; Davies BS; Shields RK; Norris AW; Patti G; Zingman LV; Taylor EB
    Elife; 2019 Jul; 8():. PubMed ID: 31305240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles.
    Koves TR; Zhang GF; Davidson MT; Chaves AB; Crown SB; Johnson JM; Slentz DH; Grimsrud PA; Muoio DM
    Cell Metab; 2023 Jun; 35(6):1038-1056.e8. PubMed ID: 37060901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria.
    Elustondo PA; White AE; Hughes ME; Brebner K; Pavlov E; Kane DA
    J Biol Chem; 2013 Aug; 288(35):25309-25317. PubMed ID: 23873936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity.
    Heden TD; Johnson JM; Ferrara PJ; Eshima H; Verkerke ARP; Wentzler EJ; Siripoksup P; Narowski TM; Coleman CB; Lin CT; Ryan TE; Reidy PT; de Castro Brás LE; Karner CM; Burant CF; Maschek JA; Cox JE; Mashek DG; Kardon G; Boudina S; Zeczycki TN; Rutter J; Shaikh SR; Vance JE; Drummond MJ; Neufer PD; Funai K
    Sci Adv; 2019 Sep; 5(9):eaax8352. PubMed ID: 31535029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Ptpmt1 limits mitochondrial utilization of carbohydrates and leads to muscle atrophy and heart failure in tissue-specific knockout mice.
    Zheng H; Li Q; Li S; Li Z; Brotto M; Weiss D; Prosdocimo D; Xu C; Reddy A; Puchowicz M; Zhao X; Weitzmann MN; Jain MK; Qu CK
    Elife; 2023 Sep; 12():. PubMed ID: 37672386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance.
    Smith CD; Lin CT; McMillin SL; Weyrauch LA; Schmidt CA; Smith CA; Kurland IJ; Witczak CA; Neufer PD
    Am J Physiol Endocrinol Metab; 2021 May; 320(5):E938-E950. PubMed ID: 33813880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM; Steinberg GR; Holloway GP
    Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylserine decarboxylase is critical for the maintenance of skeletal muscle mitochondrial integrity and muscle mass.
    Selathurai A; Kowalski GM; Mason SA; Callahan DL; Foletta VC; Della Gatta PA; Lindsay A; Hamley S; Kaur G; Curtis AR; Burch ML; Ang T; McGee SL; Bruce CR
    Mol Metab; 2019 Sep; 27():33-46. PubMed ID: 31285171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle mitochondria exhibit decreased pyruvate oxidation capacity and increased ROS emission during surgery-induced acute insulin resistance.
    Hagve M; Gjessing PF; Fuskevåg OM; Larsen TS; Irtun Ø
    Am J Physiol Endocrinol Metab; 2015 Apr; 308(8):E613-20. PubMed ID: 25670828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate oxidation in human skeletal muscle mitochondria.
    Jacobs RA; Meinild AK; Nordsborg NB; Lundby C
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(7):E686-94. PubMed ID: 23384769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.
    Warren BE; Lou PH; Lucchinetti E; Zhang L; Clanachan AS; Affolter A; Hersberger M; Zaugg M; Lemieux H
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns.
    Fritzen AJ; Grunnet N; Quistorff B
    Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure.
    Decker ST; Kwon OS; Zhao J; Hoidal JR; Heuckstadt T; Richardson RS; Sanders KA; Layec G
    Am J Physiol Endocrinol Metab; 2021 Jul; 321(1):E80-E89. PubMed ID: 34121449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity.
    Sparks LM; Gemmink A; Phielix E; Bosma M; Schaart G; Moonen-Kornips E; Jörgensen JA; Nascimento EB; Hesselink MK; Schrauwen P; Hoeks J
    Diabetologia; 2016 May; 59(5):1030-9. PubMed ID: 26886198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of substrate utilization by the mitochondrial pyruvate carrier.
    Vacanti NM; Divakaruni AS; Green CR; Parker SJ; Henry RR; Ciaraldi TP; Murphy AN; Metallo CM
    Mol Cell; 2014 Nov; 56(3):425-435. PubMed ID: 25458843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased Pyruvate but Not Fatty Acid Driven Mitochondrial Respiration in Skeletal Muscle of Growth Restricted Fetal Sheep.
    Zhao W; Kelly AC; Luna-Ramirez RI; Bidwell CA; Anderson MJ; Limesand SW
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Utilization of Competing Fuels Is Altered in Insulin Resistant Skeletal Muscle of Non-obese Rats (Goto-Kakizaki).
    Lai N; Fealy CE; Kummitha CM; Cabras S; Kirwan JP; Hoppel CL
    Front Physiol; 2020; 11():677. PubMed ID: 32612543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle.
    Frisard MI; Wu Y; McMillan RP; Voelker KA; Wahlberg KA; Anderson AS; Boutagy N; Resendes K; Ravussin E; Hulver MW
    Metabolism; 2015 Mar; 64(3):416-27. PubMed ID: 25528444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.