BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38652578)

  • 1. Analysis of Tandem Mass Spectrometry Data with CONGA: Combining Open and Narrow Searches with Group-Wise Analysis.
    Freestone J; Noble WS; Keich U
    J Proteome Res; 2024 Jun; 23(6):1894-1906. PubMed ID: 38652578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinvestigating the Correctness of Decoy-Based False Discovery Rate Control in Proteomics Tandem Mass Spectrometry.
    Freestone J; Noble WS; Keich U
    J Proteome Res; 2024 Jun; 23(6):1907-1914. PubMed ID: 38687997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hunting for unexpected post-translational modifications by spectral library searching with tier-wise scoring.
    Ma CW; Lam H
    J Proteome Res; 2014 May; 13(5):2262-71. PubMed ID: 24661115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTMiner: Localization and Quality Control of Protein Modifications Detected in an Open Search and Its Application to Comprehensive Post-translational Modification Characterization in Human Proteome.
    An Z; Zhai L; Ying W; Qian X; Gong F; Tan M; Fu Y
    Mol Cell Proteomics; 2019 Feb; 18(2):391-405. PubMed ID: 30420486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Open Modification Spectral Library Searching through Approximate Nearest Neighbor Indexing.
    Bittremieux W; Meysman P; Noble WS; Laukens K
    J Proteome Res; 2018 Oct; 17(10):3463-3474. PubMed ID: 30184435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretation of Tandem Mass Spectra of Posttranslationally Modified Peptides.
    Bunkenborg J; Matthiesen R
    Methods Mol Biol; 2020; 2051():199-230. PubMed ID: 31552630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIPI2: Sensitive Tag-Based Database Search to Identify Peptides with Multiple Post-translational Modifications.
    Lai S; Zhao P; Zhou C; Li N; Yu W
    J Proteome Res; 2024 Jun; 23(6):1960-1969. PubMed ID: 38770571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem Mass Spectrum Identification via Cascaded Search.
    Kertesz-Farkas A; Keich U; Noble WS
    J Proteome Res; 2015 Aug; 14(8):3027-38. PubMed ID: 26084232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Limit of Open Search in the Identification of Peptides With Post-translational Modifications - A Simulation-Based Study.
    Dai J; Yu F; Zhou C; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2884-2890. PubMed ID: 32356758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuickMod: A tool for open modification spectrum library searches.
    Ahrné E; Nikitin F; Lisacek F; Müller M
    J Proteome Res; 2011 Jul; 10(7):2913-21. PubMed ID: 21500769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAZIE: a mass and charge inference engine to enhance database searching of tandem mass spectra.
    Victor KG; Murgai M; Lyons CE; Templeton TA; Moshnikov SA; Templeton DJ
    J Am Soc Mass Spectrom; 2010 Jan; 21(1):80-7. PubMed ID: 19850495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpecOMS: A Full Open Modification Search Method Performing All-to-All Spectra Comparisons within Minutes.
    David M; Fertin G; Rogniaux H; Tessier D
    J Proteome Res; 2017 Aug; 16(8):3030-3038. PubMed ID: 28660767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Settings of Mass Spectrometry Open Search Strategy for Higher Confidence.
    Li D; Lu S; Liu W; Zhao X; Mai Z; Zhang G
    J Proteome Res; 2018 Nov; 17(11):3719-3729. PubMed ID: 30265008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReCom: A semi-supervised approach to ultra-tolerant database search for improved identification of modified peptides.
    Laguillo-Gómez A; Calvo E; Martín-Cófreces N; Lozano-Prieto M; Sánchez-Madrid F; Vázquez J
    J Proteomics; 2023 Sep; 287():104968. PubMed ID: 37463622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.
    Lin A; Short T; Noble WS; Keich U
    J Proteome Res; 2022 Oct; 21(10):2412-2420. PubMed ID: 36166314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID).
    Kelstrup CD; Frese C; Heck AJ; Olsen JV; Nielsen ML
    Mol Cell Proteomics; 2014 Aug; 13(8):1914-24. PubMed ID: 24895383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Unexpected Protein Modifications by Mass Spectrometry-Based Proteomics.
    Ahmadi S; Winter D
    Methods Mol Biol; 2019; 1871():225-251. PubMed ID: 30276743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics.
    Amir SH; Yuswan MH; Aizat WM; Mansor MK; Desa MNM; Yusof YA; Song LK; Mustafa S
    J Proteomics; 2021 Jun; 241():104240. PubMed ID: 33894373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.