These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 38652712)
1. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. Ouyang D; Liang Y; Wang J; Li L; Ai N; Feng J; Lu S; Liao S; Liu X; Xie S PLoS Comput Biol; 2024 Apr; 20(4):e1011927. PubMed ID: 38652712 [TBL] [Abstract][Full Text] [Related]
2. Predicting multiple types of miRNA-disease associations using adaptive weighted nonnegative tensor factorization with self-paced learning and hypergraph regularization. Ouyang D; Liang Y; Wang J; Liu X; Xie S; Miao R; Ai N; Li L; Dang Q Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168938 [TBL] [Abstract][Full Text] [Related]
3. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
4. MHCLMDA: multihypergraph contrastive learning for miRNA-disease association prediction. Peng W; He Z; Dai W; Lan W Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38243694 [TBL] [Abstract][Full Text] [Related]
5. AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA-disease associations identification. Ning Q; Zhao Y; Gao J; Chen C; Li X; Li T; Yin M Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36907654 [TBL] [Abstract][Full Text] [Related]
6. SPLHRNMTF: robust orthogonal non-negative matrix tri-factorization with self-paced learning and dual hypergraph regularization for predicting miRNA-disease associations. Ouyang D; Miao R; Zeng J; Li X; Ai N; Wang P; Hou J; Zheng J BMC Genomics; 2024 Sep; 25(1):885. PubMed ID: 39304826 [TBL] [Abstract][Full Text] [Related]
7. Multi-view Multichannel Attention Graph Convolutional Network for miRNA-disease association prediction. Tang X; Luo J; Shen C; Lai Z Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963829 [TBL] [Abstract][Full Text] [Related]
8. Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network. Liang X; Guo M; Jiang L; Fu Y; Zhang P; Chen Y Interdiscip Sci; 2024 Jun; 16(2):289-303. PubMed ID: 38286905 [TBL] [Abstract][Full Text] [Related]
9. NMCMDA: neural multicategory MiRNA-disease association prediction. Wang J; Li J; Yue K; Wang L; Ma Y; Li Q Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33778850 [TBL] [Abstract][Full Text] [Related]
10. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914 [TBL] [Abstract][Full Text] [Related]
11. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks. Si Y; Huang Z; Fang Z; Yuan Z; Huang Z; Li Y; Wei Y; Wu F; Yao YF Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39256197 [TBL] [Abstract][Full Text] [Related]
12. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064 [TBL] [Abstract][Full Text] [Related]
13. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction. Li J; Liu T; Wang J; Li Q; Ning C; Yang Y Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838 [TBL] [Abstract][Full Text] [Related]
14. Predicting miRNA-disease associations based on PPMI and attention network. Xie X; Wang Y; He K; Sheng N BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547 [TBL] [Abstract][Full Text] [Related]
15. MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. Wang YT; Wu QW; Gao Z; Ni JC; Zheng CH BMC Med Inform Decis Mak; 2021 Apr; 21(Suppl 1):133. PubMed ID: 33882934 [TBL] [Abstract][Full Text] [Related]
16. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information. Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503 [TBL] [Abstract][Full Text] [Related]
17. Predicting miRNA-disease associations based on multi-view information fusion. Xie X; Wang Y; Sheng N; Zhang S; Cao Y; Fu Y Front Genet; 2022; 13():979815. PubMed ID: 36238163 [TBL] [Abstract][Full Text] [Related]
18. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion. Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611 [TBL] [Abstract][Full Text] [Related]
19. SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction. Ji C; Yu N; Wang Y; Ni J; Zheng C IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1191-1201. PubMed ID: 38446654 [TBL] [Abstract][Full Text] [Related]
20. An improved random forest-based computational model for predicting novel miRNA-disease associations. Yao D; Zhan X; Kwoh CK BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]